Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2-4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418852PMC
http://dx.doi.org/10.1073/pnas.1423598112DOI Listing

Publication Analysis

Top Keywords

gap junctions
12
granulosa cells
12
cgmp
9
cyclic gmp
8
diffusion gap
8
restarts meiosis
8
maintaining meiotic
8
meiotic arrest
8
cgmp concentration
8
concentration follicle
8

Similar Publications

Quantum-Size Effect Induced Andreev Bound States in Ultrathin Metallic Islands Proximitized by a Superconductor.

Phys Rev Lett

August 2025

Shanghai Jiao Tong University, Tsung-Dao Lee Institute, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai 200240, China.

While Andreev bound states (ABSs) have been realized in engineered superconducting junctions, their direct observation in normal metal-superconductor heterostructures-enabled by quantum confinement-remains experimentally elusive. Here, we report the detection of ABSs in ultrathin metallic islands (Bi, Ag, and SnTe) grown on the s-wave superconductor NbN. Using high-resolution scanning tunneling microscopy and spectroscopy, we clearly reveal in-gap ABSs with energies symmetric about the Fermi level.

View Article and Find Full Text PDF

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF

Regulating enol-keto tautomerism at the single-molecule level with a confined optical field.

Chem Sci

September 2025

Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics and Centre of Single-Molecule Science, Nankai University Tianjin 300350 China

The keto-enol tautomerism, involving a reversible isomerization of the molecule, plays a critical role in organic synthesis, biological activity, and molecular-scale charge transport. It is therefore essential to manipulate the process of keto-enol tautomerism. Unlike typical ketones, β-diketones exist dominantly in the enol form and it is a great challenge to realize enol-keto tautomerism due to the formation of intramolecular hydrogen bonds in the enol form.

View Article and Find Full Text PDF

Gap junctions (GJs) are critical structures for cardiac electrical signal conduction and synchronized contraction. Their fundamental components are transmembrane proteins from the connexin (Cx) family, which assemble into hexameric channels to form intercellular ion-permeable pathways, ensuring efficient electrical transmission and coordinated contraction between cardiac cells. Connexin 43 (Cx43), the most abundant connexin in the heart, serves as the primary constituent of ventricular gap junctions.

View Article and Find Full Text PDF

Regulation of food intake by Connexin43 via adipocyte-sensory neuron electrical synapses.

Mol Metab

September 2025

Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. Electronic address:

Background And Objective: Connexin43 (Cx43), encoded by Gja1, forms gap junctions between adjacent cells. In adipose tissue, it is upregulated during adipose beiging while downregulated by high-fat-diet (HFD) feeding. Adipocyte-specific Gja1 overexpression enhances adipose tissue beiging in response to mild cold stress of room temperature.

View Article and Find Full Text PDF