A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Highly sensitive colorimetric sensor for Hg(2+) detection based on cationic polymer/DNA interaction. | LitMetric

Highly sensitive colorimetric sensor for Hg(2+) detection based on cationic polymer/DNA interaction.

Biosens Bioelectron

School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China. Electronic address:

Published: July 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The detection of ultralow concentrations of mercury is a currently significant challenge. Here, a novel strategy is proposed: the colorimetric detection of Hg(2+) based on the aggregation of gold nanoparticles (AuNPs) driven by a cationic polymer. In this three-component system, DNA combines electrostatically with phthalic diglycol diacrylate (PDDA) in a solution of AuNPs. In the presence of Hg(2+), thymine (T)-Hg(2+)-T induced hairpin turns are formed in the DNA strands, which then do not interact with PDDA, enabling the freed PDDA to subsequently facilitate aggregation of the AuNPs. Thus, according to the change in color from wine-red to blue-purple upon AuNPs aggregation, a colorimetric sensor is established to detect Hg(2+). Under optimal conditions, the color change is clearly seen with the naked eye. A linear range of 0.25-500nM was obtained by absorption spectroscopy with a detection limit of approximately 0.15nM. Additionally, the proposed method shows high selectivity toward Hg(2+) in the presence of other heavy metal ions. Real sample analysis was evaluated with the use of lake water and the results suggest good potential for practical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2015.02.018DOI Listing

Publication Analysis

Top Keywords

colorimetric sensor
8
hg2+
5
highly sensitive
4
sensitive colorimetric
4
sensor hg2+
4
detection
4
hg2+ detection
4
detection based
4
based cationic
4
cationic polymer/dna
4

Similar Publications