Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

C-MYC is overexpressed in many types of cancer linked to poor prognosis. We examined the c-Myc protein expression in adrenocortical cancer (ACC) cells to investigate the role of this protein in the neoplasm, its involvement in chemotherapy and finally to determine whether c-Myc could be considered a prognostic factor in patients with ACC. H295R and SW13 cell lines were treated with paclitaxel. c-Myc overexpressing cell clones were achieved by transfecting the H295R cell line with the pcDNA3-hMYC plasmid expressing the full-lengh C-MYC coding sequence. The SW13 cell line was transfected with siRNA oligonucleotides for C-MYC. Cell cycle analysis was evaluated by flow cytometry. c-Myc, cyclin B1 and pro caspase expression levels were evaluated by western blot analysis. We found that expression of c-Myc was highly expressed in the SW13 cells, whereas the protein was undetectable in the H295R cells. Different doses of paclitaxel were required in the two ACC cell line to induce a block in the G2 phase, characterized by increased cyclin B1 levels and to induce apoptosis by pro-caspase-3 activation. Interestingly, the silencing of C-MYC mRNA prevented paclitaxel induced apoptosis in SW13 cells, whereas in the H295R cells the overexpression of C-MYC rendered the cells more prone to growth inhibition after paclitaxel exposure. The present study directly demonstrates that C-MYC plays a central role in controlling proliferation in ACC cells after paclitaxel treatment and that c-Myc could be considered as a marker for predicting response to chemotherapeutic agents in ACC cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2015.2902DOI Listing

Publication Analysis

Top Keywords

c-myc
13
cell lines
12
adrenocortical cancer
8
cell
8
acc cells
8
c-myc considered
8
sw13 cell
8
sw13 cells
8
h295r cells
8
acc cell
8

Similar Publications

Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).

View Article and Find Full Text PDF

Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).

Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.

View Article and Find Full Text PDF

Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.

View Article and Find Full Text PDF

Objective: This study employs integrated network toxicology and molecular docking to investigate the molecular basis underlying 4-nonylphenol (4-NP)-mediated enhancement of breast cancer susceptibility.

Methods: We integrated data from multiple databases, including ChEMBL, STITCH, Swiss Target Prediction, GeneCards, OMIM and TTD. Core compound-disease-associated target genes were identified through Protein-Protein Interaction (PPI) network analysis.

View Article and Find Full Text PDF

Mature mRNAs are generated by spliceosomes that recruit factors to aid RNA splicing in which introns are removed and exons joined. Among the splicing factors, a family of proteins contain a homologous U2 Auxiliary Factor (U2AF) Homology Motif (UHM) to bind with factors containing U2AF ligand motifs (ULM) and recruit them to regulate 3' splice site selection. Mutations and overexpression of UHM splicing factors are frequently found in cancers.

View Article and Find Full Text PDF