Reprint of "Non-causal spike filtering improves decoding of movement intention for intracortical BCIs".

J Neurosci Methods

Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, USA; Department of Neuroscience, Brown University, Providence, RI, USA; Brown Institute for Brain Science, Brown University, Providence, RI, USA.

Published: April 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Multiple types of neural signals are available for controlling assistive devices through brain-computer interfaces (BCIs). Intracortically recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on "sorting" action potentials.

New Method: We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4ms lag between recording and filtering neural signals.

Results: Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant's intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study.

Conclusions: Non-causally filtering neural signals prior to extracting threshold crossing events may be a simple yet effective way to condition intracortically recorded neural activity for direct control of external devices through BCIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430555PMC
http://dx.doi.org/10.1016/j.jneumeth.2015.02.001DOI Listing

Publication Analysis

Top Keywords

neural signals
16
threshold crossing
12
crossing events
12
improves decoding
8
intracortically recorded
8
spiking neural
8
filtering neural
8
participant implanted
8
signals
7
neural
6

Similar Publications

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Goal-directed behavior requires adjusting cognitive control, both in preparation for and in reaction to conflict. Theta oscillations and population activity in dorsomedial prefrontal cortex (dmPFC) and dorsolateral PFC (dlPFC) are known to support reactive control. Here, we investigated their role in proactive control using human intracranial electroencephalogram (EEG) recordings during a Stroop task that manipulated conflict expectations.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is a neurodegenerative disorder lacking therapies to replace lost dopaminergic neurons. Neural stem cell (NSC) transplantation faces survival and differentiation challenges. This study investigated feasibility and efficacy of paeoniflorin (PF) combined with NSC transplantation for PD treatment.

View Article and Find Full Text PDF

Cancer Neuroscience: Decoding Neural Circuitry in Tumor Evolution for Targeted Therapy.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.

Recent breakthroughs in tumor biology have redefined the tumor microenvironment as a dynamic ecosystem in which the nervous system has emerged as a pivotal regulator of oncogenesis. In addition to their classical developmental roles, neural‒tumor interactions orchestrate a sophisticated network that drives cancer initiation, stemness maintenance, metabolic reprogramming, and therapeutic evasion. This crosstalk operates through multimodal mechanisms, including paracrine signaling, electrophysiological interactions, and structural innervation guided by axon-derived guidance molecules.

View Article and Find Full Text PDF