98%
921
2 minutes
20
Background: In order to estimate utilities for cancer studies where the EQ-5D was not used, the EORTC QLQ-C30 can be used to estimate EQ-5D using existing mapping algorithms. Several mapping algorithms exist for this transformation, however, algorithms tend to lose accuracy in patients in poor health states. The aim of this study was to test all existing mapping algorithms of QLQ-C30 onto EQ-5D, in a dataset of patients with malignant pleural mesothelioma, an invariably fatal malignancy where no previous mapping estimation has been published.
Methods: Health related quality of life (HRQoL) data where both the EQ-5D and QLQ-C30 were used simultaneously was obtained from the UK-based prospective observational SWAMP (South West Area Mesothelioma and Pemetrexed) trial. In the original trial 73 patients with pleural mesothelioma were offered palliative chemotherapy and their HRQoL was assessed across five time points. This data was used to test the nine available mapping algorithms found in the literature, comparing predicted against observed EQ-5D values. The ability of algorithms to predict the mean, minimise error and detect clinically significant differences was assessed.
Results: The dataset had a total of 250 observations across 5 timepoints. The linear regression mapping algorithms tested generally performed poorly, over-estimating the predicted compared to observed EQ-5D values, especially when observed EQ-5D was below 0.5. The best performing algorithm used a response mapping method and predicted the mean EQ-5D with accuracy with an average root mean squared error of 0.17 (Standard Deviation; 0.22). This algorithm reliably discriminated between clinically distinct subgroups seen in the primary dataset.
Conclusions: This study tested mapping algorithms in a population with poor health states, where they have been previously shown to perform poorly. Further research into EQ-5D estimation should be directed at response mapping methods given its superior performance in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316600 | PMC |
http://dx.doi.org/10.1186/s12955-014-0196-y | DOI Listing |
Med Eng Phys
October 2025
Biomedical Device Technology, Istanbul Aydın University, Istanbul, 34093, Istanbul, Turkey. Electronic address:
Deep learning approaches have improved disease diagnosis efficiency. However, AI-based decision systems lack sufficient transparency and interpretability. This study aims to enhance the explainability and training performance of deep learning models using explainable artificial intelligence (XAI) techniques for brain tumor detection.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Coppito, L'Aquila 67100, Italy.
In recent years Quantum Computing prominently entered in the field of Computational Chemistry, importing and transforming computational methods and ideas originally developed within other disciplines, such as Physics, Mathematics and Computer Science into algorithms able to estimate quantum properties of atoms and molecules on present and future quantum devices. An important role in this contamination process is attributed to Quantum Information techniques, having the 2-fold role of contributing to the analysis of electron correlation and entanglements and guiding the construction of wave function variational ansatzes for the Variational Quantum Eigensolver technique. This paper introduces the tool SparQ (Sparse Quantum state analysis), designed to efficiently compute fundamental quantum information theory observables on post-Hartree-Fock wave functions sparse in their definition space.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFUnlabelled: Passive Acoustic Mapping (PAM) is rapidly emerging as a ubiquitous tool for real-time localization and monitoring of therapeutic ultrasound treatments involving cavitation in the context of safety or efficacy. The ability of PAM to spatially quantify and resolve cavitation activity offers a unique opportunity to correlate the energy of cavitation phenomena with locally observed bioeffects.
Objective: We aim to develop methods of measuring and reporting spatio-temporally varying cavitation energies that are energy-preserving, device-independent, and adequately normalized to the volume of tissue being affected by the reported cavitation activity.
Radiology
September 2025
Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background MRI-derived arrhythmogenic substrate, including late gadolinium enhancement (LGE) and extracellular volume fraction (ECV), is indicative of sudden cardiac death (SCD) risk in nonischemic dilated cardiomyopathy (DCM). The relative prognostic value of LGE and ECV remains unclear. Purpose To evaluate the performance of LGE and T1 mapping in predicting SCD in patients with DCM and to explore clinical implementation.
View Article and Find Full Text PDF