Disentangling natural and anthropogenic sources of atmospheric sulfur in an industrial region using biomonitors.

Environ Sci Technol

Universidade de Lisboa , Faculdade de Ciências, Centro de Biologia Ambiental, Campo Grande, 1749-016 Lisboa, Portugal.

Published: February 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite reductions in atmospheric sulfur (S) concentrations due to abatement policies in some countries, modeling the dispersion of this pollutant and disentangling anthropogenic sources from natural ones is still of great concern. Lichens have been used as biomonitors of the impacts of S for over 40 years, but their potential as source-tracers of specific sources, including natural ones, remains unexplored. In fact, few attempts have been made to try to distinguish and spatially model different sources of S using lichens. We have measured S concentrations and isotopic values in lichens within an industrial coastal region where different sources of S, natural and anthropogenic, interplay. We detected a prevailing influence of natural sea-originated S that mixed with anthropogenic sources of S. We were then able to disentangle the sources of S, by removing the ocean influence on S isotopic values, enabling us to model the impact of different anthropogenic sources on S deposition and highlighting the potential use of lichens to evaluate the weight of different types of anthropogenic sources.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es505292tDOI Listing

Publication Analysis

Top Keywords

anthropogenic sources
20
sources
9
natural anthropogenic
8
atmospheric sulfur
8
sources natural
8
isotopic values
8
anthropogenic
6
disentangling natural
4
sources atmospheric
4
sulfur industrial
4

Similar Publications

Submicron metal-bearing aerosols from an industrial hub of the North China Plain.

J Hazard Mater

September 2025

Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan. Electronic address:

Particulate matter emitted from heavy industries is a major source of atmospheric metals in the North China Plain (NCP). In this study, submicron particles (0.1-1.

View Article and Find Full Text PDF

Source-specific insights into photochemical and microbial degradation of dissolved organic matter in coastal environments.

Mar Environ Res

September 2025

Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China.

Coastal zones are critical for the biogeochemical cycling of dissolved organic matter (DOM) in marine ecosystems, yet the relative importance of photochemical and microbial degradation in DOM transformation remains poorly understood due to complex hydrodynamics, diverse sources, and human activities. Through 14-day laboratory incubations, we investigated DOM transformation mechanisms from three common marine coastal space uses: port, mariculture and inshore areas adjacent to Yantai City. DOM characterization was performed using fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and UV-Vis spectroscopic indices.

View Article and Find Full Text PDF

Spatiotemporal characteristics, drivers, sources, and health risks of nitrate and sulfate in groundwater on the Chinese Loess Plateau.

Water Res

September 2025

Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China; The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang, 050061, China.

Groundwater nitrate (NO) and sulfate (SO) pollution in semi-arid regions has attracted widespread attention. However, unveiling the dynamics and sources of NO and SO in regional groundwater is challenging because of complex anthropogenic activities and hydrogeological conditions. This study combined physicochemistry and multiple stable isotopes (δH-HO, δO-HO, δN-NO, δO-NO, δS-SO, and δO-SO) to explore the spatiotemporal patterns, driving factors, sources, and potential health hazards of NO and SO in groundwater on the Loess Plateau, China.

View Article and Find Full Text PDF

This study investigates the vertical profiles, pollution status and ecological risks of heavy metal(loid)s contamination in three sediment cores (N21, N03, and 38002) from the North Yellow Sea (NYS), with a focus on the influence of grain size effects on sedimentary profiles. The results revealed distinct vertical distribution patterns of heavy metal(loid)s content among the three sediment cores. Enrichment Factor (EF) and Geo-accumulation Index (I) assessments identified Sb as significantly enriched, indicating anthropogenic influence, whereas Co, Cr, Cu, Ni, and Zn primarily originated from natural weathering.

View Article and Find Full Text PDF

What doesn't kill you makes you stronger: the sea urchin Arbacia lixula living on volcanic CO vents.

Mar Environ Res

August 2025

Departamento de Biología Animal, Edafología y Geología. Facultad de Ciencias. Sección Biología. Universidad de La Laguna, Tenerife, Canary Islands, Spain.

Anthropogenic CO emissions drive ocean acidification (OA), which reduces seawater pH and carbonate ion availability, threatening calcifying organisms such as sea urchins. This study examines the long-term effects of OA on Arbacia lixula using a natural volcanic CO vent at Fuencaliente, La Palma (Canary Islands) as an analogue of future conditions. We analyzed the external morphology, skeletal strength, mineralogy, and growth of A.

View Article and Find Full Text PDF