98%
921
2 minutes
20
The intermolecular interactions of the two most basic Ru(II) complex dyes for dye-sensitized solar cells (DSSCs), N719 and N749, with the iodine species are investigated using density functional theory (DFT). In addition to interactions with a single I2 molecule, multiple I2 interactions and simultaneous interactions of I2 and I(-) occur. N719 with two isothiocyanato (NCS) ligands interacts with two I2 molecules via the two terminal S atoms in the ground singlet electronic state, whereas N749 with three NCS ligands forms three S···I-I bonds. Irrespective of the NCS position and the number of I2 molecules, N749 has a stronger interaction with I2 than N719. Conversely, the interaction of I(-) with oxidized N749 via the terminal S atom of the NCS ligand is weaker than that with oxidized N719. However, simultaneous interactions of oxidized N749 with two I2 molecules promote the I(-) interaction, and the I(-) interaction with N749 becomes stronger than that with N719 bonded to both an I2 and I(-). The computational results of multiple interactions between the dye and iodine species suggest that the difference in DSSC performance between N719 and N749 dyes is explained by recombination related to the I2 interaction and regeneration of the oxidized dye by I(-).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp05636a | DOI Listing |
Phys Chem Chem Phys
December 2020
Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China.
In this study, a quartz crystal microbalance (QCM) in situ method is used to study the kinetic and thermodynamic processes of the adsorption of ruthenium-based dyes (N719, N3, N749), and the co-adsorbent chenodeoxycholic acid (CDCA) on the TiO2 film surface. The results of the kinetic studies show that the adsorption rate of N749 is slightly higher than the other two dyes, and the adsorption rate of CDCA is more sensitive to temperature change. The adsorption mechanism of the dye and CDCA on the surface of TiO2 can be reasonably inferred based on the result of the activation energy.
View Article and Find Full Text PDFLangmuir
February 2020
Department of Chemistry , University of Massachusetts Boston, 100 Morrissey Blvd. , Boston , Massachusetts 02125 , United States.
Dye-pretreated anatase TiO films, commonly used as photoanodes in dye-sensitized solar cells, were utilized as a model system to investigate the laser-induced anatase to rutile phase transformation (ART), using N719 dye, N749 dye, D149 dye, and MC540 dye as photosensitizers. The visible lasers (532 and 785 nm) used for Raman spectroscopy were able to transform pure anatase into rutile at the laser spot when excitation of the dye sensitizer caused an electron injection from the excited state of the dye molecule into the conduction band of TiO. The three dyes with carboxylic acid anchor groups (N719, N749, and D149 dyes) experienced ART upon dye excitation; diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and Raman spectra validated that these dyes were chemisorbed to the semiconductor surface.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2015
National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
The intermolecular interactions of the two most basic Ru(II) complex dyes for dye-sensitized solar cells (DSSCs), N719 and N749, with the iodine species are investigated using density functional theory (DFT). In addition to interactions with a single I2 molecule, multiple I2 interactions and simultaneous interactions of I2 and I(-) occur. N719 with two isothiocyanato (NCS) ligands interacts with two I2 molecules via the two terminal S atoms in the ground singlet electronic state, whereas N749 with three NCS ligands forms three S···I-I bonds.
View Article and Find Full Text PDFChem Asian J
June 2012
Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea.
The inverse-micellar preparation of Si nanoparticles (Nps) was improved by utilizing sodium naphthalide. The Si Nps were subsequently functionalized with 4-vinylbenzoic acid for their attachment onto TiO(2) films of dye-sensitized solar cells (DSSCs). The average diameter of the COOH-functionalized Si (Si-COOH) Nps was 4.
View Article and Find Full Text PDFNanotechnology
January 2011
Solar Cell Center, Energy Division, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea.
We have developed a facile method to position different dyes (N719 and N749) sequentially in a mesoporous TiO(2) layer through selective desorption and adsorption processes. From the selective removal of the only upper part of the first adsorbed dye, double-layered dye-sensitized solar cells have been successfully achieved without any damage to the dye. From the incident photon-to-current conversion efficiency (IPCE) measurement, the multi-layered dye-sensitized solar cell (MDSSC) was found to exhibit an expanded spectral response for the solar spectrum while maintaining the maximum IPCE value of each single-layered cell.
View Article and Find Full Text PDF