Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle.

Eur J Appl Physiol

Department of Kinesiology, Exercise Physiology Research Group, FaBeR, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium.

Published: June 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To investigate how acute environmental hypoxia regulates blood glucose and downstream intramuscular insulin signaling after a meal in healthy humans.

Methods: Fifteen subjects were exposed for 4 h to normoxia (NOR) or to normobaric hypoxia (HYP, FiO2 = 0.11) in a randomized order 40 min after consumption of a high glycemic meal. A muscle biopsy from m. vastus lateralis and a blood sample were taken before (T0), after 1 h (T60) and 4 h (T240) in NOR or HYP and blood glucose levels were measured before exposure and every 30 min.

Results: In HYP, blood glucose was reduced 100 min (110.1 ± 5.4 in NOR vs 89.5 ± 4.7 mg dl(-1) in HYP) and 130 min (98.7 ± 3.8 in NOR vs 85.6 ± 4.9 mg dl(-1) in HYP) after completion of a meal, which resulted in an 83 % lower AUC in HYP compared to NOR (p = 0.006). This coincided with 40 % lower GLUT4 protein in the cytosolic fraction (p = 0.013) and a tendency to increase in the crude membrane fraction (p = 0.070) in HYP compared to NOR. At T240, blood glucose concentration was similar between HYP and NOR, whereas plasma insulin as well as phosphorylation of muscle Akt and GSK-3 was ~2-fold higher in HYP compared to NOR (p < 0.05). In contrast, Rac1 protein was less abundant in the membrane fraction in HYP compared to NOR (p = 0.003), reflecting lower activation.

Conclusion: Acute environmental hypoxia initially reduced blood glucose response to a meal, possibly via an increase in GLUT4 abundance at the sarcolemmal membrane. Later on, whole body insulin intolerance developed independently of defects in conventional insulin signaling in skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-015-3103-2DOI Listing

Publication Analysis

Top Keywords

blood glucose
16
hyp compared
12
hyp
9
environmental hypoxia
8
hyp blood
8
blood
5
acute systemic
4
systemic insulin
4
insulin intolerance
4
intolerance alter
4

Similar Publications

Background: Current scoring systems for hypertriglyceridaemia-induced acute pancreatitis (HTG-AP) severity are few and lack reliability. The present work focused on screening predicting factors for HTG-SAP, then constructing and validating the visualization model of HTG-AP severity by combining relevant metabolic indexes.

Methods: Between January 2020 and December 2024, retrospective clinical information for HTG-AP inpatients from Weifang People's Hospital was examined.

View Article and Find Full Text PDF

Background: The CRP-albumin-lymphocyte (CALLY) index has potential clinical value as a novel marker integrating inflammatory, nutritional and immune status in the development of colorectal polyps. This study examined whether gender factors influence the association between CALLY and colorectal polyps; in addition to elucidating whether metabolic pathways mediate this relationship.

Methods: This is a cross-sectional study including 5409 adult health screening participants who completed colonoscopy.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Sodium-glucose Cotransporter 2 (SGLT-2) inhibitors are oral antidiabetic drugs that were developed for the treatment of patients with diabetes mellitus and are now also approved for treating chronic heart failure and chronic kidney disease. By inhibiting SGLT‑2 in the proximal renal tubule, urinary excretion of glucose is increased. Large randomized trials have demonstrated improved glycemic control, reduced cardiovascular events and lower mortality but also an increased risk of urogenital infections and dehydration.

View Article and Find Full Text PDF