PCL/alginate composite scaffolds for hard tissue engineering: fabrication, characterization, and cellular activities.

ACS Comb Sci

Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 110-745, South Korea.

Published: February 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alginates have been used widely in biomedical applications because of good biocompatibility, low cost, and rapid gelation in the presence of calcium ions. However, poor mechanical properties and fabrication-ability for three-dimensional shapes have been obstacles in hard-tissue engineering applications. To overcome these shortcomings of alginates, we suggest a new composite system, consisting of a synthetic polymer, poly(ε-caprolactone), and various weight fractions (10-40 wt %) of alginate. The fabricated composite scaffolds displayed a multilayered 3D structure, consisting of microsized composite struts, and they provided a 100% offset for each layer. To show the feasibility of the scaffold for hard tissue regeneration, the composite scaffolds fabricated were assessed not only for physical properties, including surface roughness, tensile strength, and water absorption and wetting, but also in vitro osteoblastic cellular responses (cell-seeding efficiency, cell viability, fluorescence analyses, alkaline phosphatase (ALP) activity, and mineralization) by culturing with preosteoblasts (MC3T3-E1). Due to the alginate components in the composites, the scaffolds showed significantly enhanced wetting behavior, water-absorption (∼12-fold), and meaningful biological activities (∼2.1-fold for cell-seeding efficiency, ∼2.5-fold for cell-viability at 7 days, ∼3.4-fold for calcium deposition), compared with a pure PCL scaffold.

Download full-text PDF

Source
http://dx.doi.org/10.1021/co500033hDOI Listing

Publication Analysis

Top Keywords

composite scaffolds
12
hard tissue
8
cell-seeding efficiency
8
pcl/alginate composite
4
scaffolds
4
scaffolds hard
4
tissue engineering
4
engineering fabrication
4
fabrication characterization
4
characterization cellular
4

Similar Publications

Porous SiO/ZnO-carboxymethyl cellulose composite hydrogels for enhanced hemostatic efficacy and antibacterial activity.

Int J Biol Macromol

September 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. Electronic address:

The development of effective hemostatic and antibacterial dressings remains a critical challenge in wound management. We report the design and fabrication of novel porous composite hydrogels composed of carboxymethyl cellulose (CMC), silica (SiO), and zinc oxide nanoparticles (ZnO NPs) . The incorporation of SiO and ZnO NPs into the CMC hydrogel matrix resulted in a unique multi-scale porous structure, characterized by interconnected holes of various sizes, which significantly enhanced the hydrogel's liquid absorption capacity and mechanical strength.

View Article and Find Full Text PDF

Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.

View Article and Find Full Text PDF

This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.

View Article and Find Full Text PDF

In-situ extrusion 3D printing with tea polyphenol crosslinking for Hyaluronic acid sodium salt -based composite hydrogel scaffolds.

Colloids Surf B Biointerfaces

September 2025

School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.

High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.

View Article and Find Full Text PDF

In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.

View Article and Find Full Text PDF