98%
921
2 minutes
20
A new arrangement of the INCAT (inside needle capillary adsorption trap) device with Carbopack X and Carboxen 1000 as sorbent materials was applied for sampling, preconcentration and injection of C6C19n-alkanes and their monomethyl analogs in exhaled breath samples. For the analysis both GC-MS/MS and GC×GC-FID techniques were used. Identification of the analytes was based on standards, measured retention indices and selective SRM transitions of the individual isomers. The GC-MS/MS detection limits were in the range from 2.1 pg for n-tetradecane to 86 pg for 5-methyloctadecane. The GC×GC-FID detection limits ranged from 19 pg for n-dodecane to 110 pg for 3-methyloctane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2014.11.026 | DOI Listing |
J Breath Res
September 2025
Department of Anatomy, Physiology, and Cell Biology, , University of California Davis, School of Veterinary Medicine, Davis, California, 95616-5270, UNITED STATES.
Millions of people worldwide are exposed to environmental arsenic in drinking water, resulting in both malignant and nonmalignant diseases. Interestingly, early life exposure by itself is sufficient to produce higher incidences of these diseases later in life. Based on the delayed onset of disease, we hypothesized that early life arsenic exposure would also induce long-term alterations in the metabolic profile.
View Article and Find Full Text PDFRedox Biol
September 2025
Multi-Omics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Human Biology Microbiome Quantum Research Center, Keio University School of Medicine, Tokyo, Japan. Electronic address:
Ferroptosis, an iron-dependent cell death mechanism characterized by excessive lipid peroxidation, has been implicated in numerous human diseases and organ pathologies. However, current detection methods necessitate invasive tissue sampling to assess lipid peroxidation, making noninvasive detection of ferroptosis in human subjects extremely challenging. In this study, we employed oxidative volatolomics to comprehensively characterize the volatile oxidized lipids (VOLs) produced during ferroptosis.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2025
Division of Immunology, Immunity to Infection & Respiratory Medicine, University of Manchester, United Kingdom.
Biomarkers based on volatile organic compounds (VOCs) measured in human breath have been investigated in a wide range of diseases. However, the excitement surrounding such biomarkers has not yet translated to the discovery of any that are ready for clinical implementation. A lack of standardisation in sampling and analysis has been identified as a key obstacle to the validation of potential biomarkers in in multi-centre studies.
View Article and Find Full Text PDFCancer Pathog Ther
September 2025
Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, United States.
Background: Stereotactic body radiotherapy (SBRT) is an effective treatment for early-stage non-small cell lung cancer. However, patient breathing can affect treatment accuracy. Therefore, this study aimed to develop a bi-polar (BP) gated motion management strategy for SBRT and evaluate its feasibility geometrically and dosimetrically.
View Article and Find Full Text PDFCancer Pathog Ther
September 2025
State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Guangzhou, Guangdong
Volatile organic compounds (VOCs) are carbon-based chemicals characterized by high vapor pressure and low boiling points under standard temperature and pressure conditions. VOCs are categorized as exogenous or endogenous, depending on their source. Endogenous VOCs are metabolic byproducts eliminated via respiration.
View Article and Find Full Text PDF