Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching at nonpolar cuts of uniaxial ferroelectrics. In this case, the in-plane component of the polarization vector switches, allowing for detailed observations of the resultant domain morphologies. We observe a surprising variability of resultant domain morphologies stemming from a fundamental instability of the formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling the vertical tip position allows the polarity of the switching to be controlled. This represents a very unusual form of symmetry breaking where mechanical motion in the vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn506268g | DOI Listing |