Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Myb genes constitute one of the largest transcription factor families in the plant kingdom. Soybean MYB transcription factors have been related to the plant response to biotic stresses. Their involvement in response to Phakopsora pachyrhizi infection has been reported by several transcriptional studies. Due to their apparently highly diverse functions, these genes are promising targets for developing crop varieties resistant to diseases. In the present study, the identification and phylogenetic analysis of the soybean R2R3-MYB (GmMYB) transcription factor family was performed and the expression profiles of these genes under biotic stress were determined. GmMYBs were identified from the soybean genome using bioinformatic tools, and their putative functions were determined based on the phylogenetic tree and classified into subfamilies using guides AtMYBs describing known functions. The transcriptional profiles of GmMYBs upon infection with different pathogen were revealed by in vivo and in silico analyses. Selected target genes potentially involved in disease responses were assessed by RT-qPCR after different times of inoculation with P. pachyrhizi using different genetic backgrounds related to resistance genes (Rpp2 and Rpp5). R2R3-MYB transcription factors related to lignin synthesis and genes responsive to chitin were significantly induced in the resistant genotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2014.08.005DOI Listing

Publication Analysis

Top Keywords

transcription factor
12
factor family
8
phakopsora pachyrhizi
8
transcription factors
8
genes
6
transcription
5
genomic transcriptomic
4
transcriptomic characterization
4
characterization transcription
4
family r2r3-myb
4

Similar Publications

Spodoptera frugiperda is a major crop pest that invaded Thailand in 2018 which cause significant damage, particularly to maize. In recent years, a loss of efficacy of certain insecticides has been observed, suggesting the emergence of resistance. The aim of our study was to investigate the molecular mechanisms of resistance in S.

View Article and Find Full Text PDF

The LIM domain protein LmFHL2 is required for nymph-adult metamorphosis of Locusta migratoria.

Pestic Biochem Physiol

November 2025

Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China. Electronic address:

The four-and-a-half LIM domain protein 2 (FHL2) is a conserved transcriptional co-regulator critical for vertebrate development and metabolism, yet its roles in arthropods remain poorly understood. Here, we report the functional characterization of LmFHL2 in the migratory locust Locusta migratoria, a devastating pest reliant on precise molting cycles for growth and swarming. Phylogenetic and expression analyses revealed high conservation of LmFHL2 across insects, with predominant expression in integument and gut tissues.

View Article and Find Full Text PDF

Transcription factor MaAP-1 regulates conidiation patterns via YAP domain binding to the MaPom1 promoter in Metarhizium acridum: Implications for enhancing fungal biocontrol efficiency.

Pestic Biochem Physiol

November 2025

School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China; Nationa

Entomopathogenic fungi such as Metarhizium acridum are pivotal for sustainable pest management, yet the industrial conidial production is hindered by low yields and environmental sensitivity. Transcriptional regulation provides key targets for engineering strain modification. AP-1 transcription factors (TFs) are well-known for their roles in fungal growth, development, conidiation, pathogenicity and stress tolerance across various fungi.

View Article and Find Full Text PDF

Small organic ligands for the ecdysone receptor - agrochemicals, gene switches, and beyond.

Pestic Biochem Physiol

November 2025

School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2050, Australia.

While pesticides are essential for the world to meet its increasing demand for food, off-target toxicity in humans and other species is an ongoing environmental issue. There is a strong motivation for developing more selective pesticides that can target pest insects, for example, while being benign for beneficial insects such as bees, and other nontarget species more generally. The ecdysone receptor is absent in vertebrates so constitutes a very useful target for green insecticides.

View Article and Find Full Text PDF

The nitrogen regulator AreA modulates lipid metabolism through uga2 in Mucor circinelloides.

Fungal Biol

October 2025

Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China; School of Basic Medicine, Qilu Medical University, Zibo, 255300, Shandong, China. Electronic address:

Oleaginous filamentous fungus Mucor circinelloides harbors a GATA transcription activator AreA, which regulates nitrogen metabolism. In our previous study, deletion of AreA resulted in increased lipid production, while its overexpression reduced lipid synthesis. Although it is not a direct lipogenesis regulator, AreA influences metabolic flux by modulating nitrogen utilization pathways, which in turn affects carbon distribution.

View Article and Find Full Text PDF