A practical aryl unit for azlactone dynamic kinetic resolution: orthogonally protected products and a ligation-inspired coupling process.

Angew Chem Int Ed Engl

Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2 (Ireland).

Published: January 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The first strategy for bringing about enantioselective azlactone dynamic kinetic resolution to generate orthogonally protected amino acids has been developed. In the presence of a C2-symmetric squaramide-based catalyst, benzyl alcohol reacts with novel yet readily prepared tetrachloroisopropoxycarbonyl-substituted azlactones to generate trapped phthalimide products of significant synthetic interest with excellent enantiocontrol. These materials are masked amino acids which are demonstrably orthogonally protected: cleavage of the phthalimide can be achieved in the presence of the ester and vice versa. This process could be utilized to bring about a highly stereoselective ligation-type coupling of protected serines (at stoichiometric loadings) with racemic azlactones derived from both natural and abiotic amino acids. After deprotection, a subsequent base-mediated O→N acyl transfer occurs to form a dipeptide.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201406857DOI Listing

Publication Analysis

Top Keywords

orthogonally protected
12
amino acids
12
azlactone dynamic
8
dynamic kinetic
8
kinetic resolution
8
practical aryl
4
aryl unit
4
unit azlactone
4
resolution orthogonally
4
protected
4

Similar Publications

With the rapid development of the nuclear medicine business worldwide, the removal of iodine-131 from specific contaminated environments to protect public health has important application prospects. In this study, the surface decontamination mechanism of Ce(IV)/HNO3 as a decontaminant for iodine-131-contaminated nonmetallic materials was investigated by using an orthogonal experimental method and scanning electron microscopy (SEM). During the preparation experiments with the contaminated materials, both quartz glass and ceramics reached peak activity concentration levels at 4 h of adsorption (contamination) by using immersion; the decontamination factor (DF) was selected as the test index for the decontamination experiments.

View Article and Find Full Text PDF

Photocatalytic C-X Bond Cleavage Facilitates Peptide Synthesis.

J Am Chem Soc

September 2025

Center for Chemical Glycobiology, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

The ability to selectively cleave C-heteroatom bonds is critically important in chemical science, from peptide and protein synthesis to biomolecule manipulation. For example, C-heteroatom bond cleavage is widely used in fluorenylmethyloxycarbonyl/-butyl (Fmoc/Bu)-based solid-phase peptide synthesis (SPPS). Despite its usefulness, it has inextricable limitations, such as issues with hydrophobicity and side reactions, owing to the need for the use of a strong trifluoroacetic acid (TFA, a pervasive forever chemical) as the cleavage reagent.

View Article and Find Full Text PDF

Multi-Enzymatic Cascade Catalysis in Photodynamic Nanozymes for Augmenting Radiotherapy of Breast Cancer.

Adv Healthc Mater

September 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.

Overcoming resistance to radiotherapy remains a significant challenge in breast cancer management. A one-step coordinated synthesis of BODIPY-integrated photodynamic nanozymes (FZBNPs) that facilitate an orthogonal catalytic cascade for radiotherapy potentiation is presented. The engineered FZBNPs simultaneously alleviate tumor hypoxia through catalase-mimetic oxygen (O) generation and amplify reactive oxygen species (ROS) production via peroxidase-like activity, synergizing with BODIPY-mediated singlet oxygen (O) generation under 660 nm light irradiation.

View Article and Find Full Text PDF

Tissue microenvironment characteristics associated with elevated risk of colorectal cancer (CRC) in Lynch syndrome (LS) are poorly characterized. We applied the multimodal single cell sequencing platform ExCITE-seq to define the colonic cellular composition and transcriptome of LS carriers with and without a history of CRC compared with general population controls. Our analysis revealed widespread remodeling in LS that included striking expansion of epithelial stem and progenitor cells, and loss of fibroblast populations.

View Article and Find Full Text PDF

Tissue microenvironment characteristics associated with elevated risk of colorectal cancer (CRC) in Lynch syndrome (LS) are poorly characterized. We applied the multimodal single cell sequencing platform ExCITE-seq to define the colonic cellular composition and transcriptome of LS carriers with and without a history of CRC compared with general population controls. Our analysis revealed widespread remodeling in LS that included striking expansion of epithelial stem and progenitor cells, and loss of fibroblast populations.

View Article and Find Full Text PDF