Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.

Ground Water

Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716.

Published: July 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h-greater than the expected net-zero flux, but significantly less than theoretical wave-driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one-way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gwat.12302DOI Listing

Publication Analysis

Top Keywords

seepage meter
32
meter measurements
16
steady flow
12
unidirectional flux
12
measurements
9
seepage
9
meter
8
surface water
8
seepage meters
8
flux
8

Similar Publications

Submarine groundwater discharge (SGD) plays a pivotal role in coastal biogeochemistry, yet it is still challenging to accurately quantify water and solute fluxes driven by this process due to its complex hydrogeological dynamic. This work aims to improve the methods to identify and independently quantify different pathways of SGD by combining direct measurements through seepage meters and Amphibious Electrical Resistivity Tomography (AERT) at a heterogeneous karstic system in the Mediterranean Sea. The integrated approach identified and quantified distinct SGD pathways, including beach-face recirculation, focused discharge zones, submarine springs, and diffusive discharge, each uniquely influencing SGD dynamics.

View Article and Find Full Text PDF

Freshwater lakes are severely threatened, due largely to excess inputs of nutrients and other contaminants. Phosphorus (P) is receiving renewed attention due to recent increases in toxic cyanobacteria blooms in lakes worldwide. We investigated groundwater seepage for its role in P loading dynamics at Oneida Lake, New York, USA-one of the most well-studied lakes globally.

View Article and Find Full Text PDF

This is the first well-documented report on the occurrence of pockmarks in Puck Bay. Pockmarks in the seafloor of Puck Bay were discovered during a hydroacoustic survey carried out in 2020. They are located at a depth of 25-27 m in the southwestern part of the bay.

View Article and Find Full Text PDF

We investigated relationships between features of benthic macrofaunal communities and geochemical parameters in and around microbial mat-covered sediments associated with a methane seepage on Sakata Knoll in the eastern Japan Sea. A depression on top of the knoll corresponds to a gas-hydrate-bearing area with seepage of methane-rich fluid, and microbial mats cover the seafloor sediments. Sediment cores were collected at three sites for this study: one within a microbial mat, a second a few meters outside of the microbial mat, and a third from a reference site outside the gas-hydrate-bearing areas.

View Article and Find Full Text PDF

Chemical movement influences exposure, remediation and interventions. Understanding chemical movement in addition to chemical concentrations at contaminated sites is critical to informed decision making. Using seepage meters and passive sampling devices we assessed both diffusive and advective flux of bioavailable polycyclic aromatic hydrocarbons (PAHs) at three time points, across two seasons, at a former creosote site in St.

View Article and Find Full Text PDF