98%
921
2 minutes
20
A fundamental challenge in treating disease is identifying molecular states that affect cellular responses to drugs. Here, we focus on glycogen synthase kinase 3 (GSK-3), a key regulator for many of the hallmark behaviors of cancer cells. We alter GSK-3 activity in colon epithelial cells to test its role in modulating drug response. We find that GSK-3 activity broadly affects the cellular sensitivities to a panel of oncology drugs and kinase inhibitors. Specifically, inhibition of GSK-3 activity can strongly desensitize or sensitize cells to kinase inhibitors (for example, mTOR or PLK1 inhibitors, respectively). Additionally, colorectal cancer cell lines, in which GSK-3 function is commonly suppressed, are resistant to mTOR inhibitors and yet highly sensitive to PLK1 inhibitors, and this is further exacerbated by additional GSK-3 inhibition. Finally, by conducting a kinome-wide RNAi screen, we find that GSK-3 modulates the cell proliferative phenotype of a large fraction (∼35%) of the kinome, which includes ∼50% of current, clinically relevant kinase-targeted drugs. Our results highlight an underappreciated interplay of GSK-3 with therapeutically important kinases and suggest strategies for identifying disease-specific molecular profiles that can guide optimal selection of drug treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270937 | PMC |
http://dx.doi.org/10.1038/nchembio.1690 | DOI Listing |
JCO Precis Oncol
September 2025
Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA.
Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.
View Article and Find Full Text PDFCell Rep
September 2025
Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan. Electronic address:
Microglia, the resident macrophages in the central nervous system (CNS), have been intensively studied using rodent genetic models, including the Cre-loxP system. Among them are tamoxifen (TAM)-inducible CX3C chemokine receptor 1 (Cx3cr1)-Cre mouse lines (Cx3cr1), which have enabled in-depth analyses of the biological features and functions of myeloid cells, including microglia. Occasionally, these Cx3cr1 tools have yielded conflicting biological outcomes, the underlying mechanism of which remains unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
The mutagenic translesion synthesis (TLS) pathway, which is critically dependent on REV1's ability to recruit inserter TLS polymerases and the POLζ extender polymerase, enables cancer cells to bypass DNA lesions while introducing mutations that likely contribute to the development of chemotherapy resistance and secondary malignancies. Targeting this pathway represents a promising therapeutic strategy. Here, we demonstrate that the expression of the C-terminal domain (CTD) of human REV1, a ca.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla.
Importance: Janus kinase (JAK) inhibitors are highly effective medications for several immune-mediated inflammatory diseases (IMIDs). However, safety concerns have led to regulatory restrictions.
Objective: To compare the risk of adverse events with JAK inhibitors vs tumor necrosis factor (TNF) antagonists in patients with IMIDs in head-to-head comparative effectiveness studies.
Mol Divers
September 2025
Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia.
Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.
View Article and Find Full Text PDF