Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nucleic acid-based tests for infectious diseases currently used in the clinical laboratory and in point-of-care devices are diverse. Measurement challenges associated with standardization of quantitative viral load testing are discussed in relation to human cytomegalovirus, BK virus, and Epstein-Barr virus, while the importance of defining the performance of qualitative methods is illustrated with Mycobacterium tuberculosis and influenza virus. The development of certified reference materials whose values are traceable to higher-order standards and reference measurement procedures, using, for instance, digital PCR, will further contribute to the understanding of analytical performance characteristics and promote clinical data comparability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473239PMC
http://dx.doi.org/10.1128/JCM.02136-14DOI Listing

Publication Analysis

Top Keywords

standardization nucleic
4
nucleic acid
4
acid tests
4
tests clinical
4
clinical measurements
4
measurements bacteria
4
bacteria viruses
4
viruses nucleic
4
nucleic acid-based
4
acid-based tests
4

Similar Publications

Small Interfering RNA Therapy Targeting the Long Noncoding RNA SMILR for Therapeutic Intervention in Coronary Artery Bypass Graft Failure.

JACC Basic Transl Sci

September 2025

BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands. Electronic address: andy.bak

Coronary artery bypass graft (CABG) surgery remains the gold standard of care to prevent myocardial ischemia in patients with advanced atherosclerosis; however, poor long-term graft patency remains a considerable and long-standing problem. Excessive vascular smooth muscle cell (SMC) proliferation in the grafted tissue is recognized as central to late CABG failure. We previously identified SMILR, a human-specific SMC-enriched long noncoding RNA that drives SMC proliferation, suggesting that targeting SMILR expression could be a novel way to prevent neointima formation, and thus CABG failure.

View Article and Find Full Text PDF

Human-associated metagenomic data often contain human nucleic acid information, which can affect the accuracy of microbial classification or raise ethical concerns. These reads are typically removed through alignment to the human genome using various metagenomic mapping tools or human reference genomes, followed by filtration before metagenomic analysis. In this study, we conducted a comprehensive analysis to identify the optimal combination of alignment software and human reference genomes using benchmarking data.

View Article and Find Full Text PDF

The Framework for Nucleic Acid Synthesis Screening (FNASS), introduced by the U.S. White House Office of Science and Technology Policy, establishes new biosecurity measures to address emerging concerns about the potential misuse of synthetic nucleic acid sequences.

View Article and Find Full Text PDF

Clustering DNA and RNA molecular dynamics ensembles via secondary structure.

Biophys J

September 2025

Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA. Electronic address:

Macromolecular structure is central to biology. Yet, not all biomolecules have a well-defined fold. Intrinsically disordered regions are ubiquitous, conveying a versatility to function even in otherwise folded structures.

View Article and Find Full Text PDF

On-Target Photoassembly of Pyronin Dyes for Super-Resolution Microscopy.

Angew Chem Int Ed Engl

September 2025

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.

Controlled photoactivation is an auspicious and emerging approach in super-resolution microscopy, offering virtually zero background signal from the marker prior to activation. Pyronins are well-established fluorophores, but due to their inherent intercalating tendency towards nucleic acids, their use has been mostly avoided in super-resolution microscopy. Here, we describe a new class of diaryl ether and diaryl silane molecules that upon photoactivation close into fluorescent (silicon-)pyronins and term them Pyronin Upon Light Irradiation (PULI).

View Article and Find Full Text PDF