98%
921
2 minutes
20
Solid-phase peptide synthesis has been an attractive method for synthesizing peptides because it is quick and can be automated. The heterogeneous reaction medium in solid-phase peptide synthesis necessitates the use of large equivalents of reagents to drive the reactions to completion. Peptide synthesis using soluble, yet isolable, supports is an attractive alternative to solid-phase peptide synthesis. Reported herein is a soluble poly(norbornene)-derived support containing multiple attachment sites for high loading capacities and solubilizing oligoether/alkyl groups. The Ala-attached support has been used to synthesize tri- to octapeptides in 28 to 97% yields using only 1.2 equiv of amino acids and coupling reagents. The acyclic hexapeptide precursor to natural product segatalin A was synthesized in 41% yield on the support using one-eighth of the equivalents of coupling reagents compared to that in reported procedures. The support could be recovered in up to 98% yield after peptide synthesis, and the recovered support was utilized to synthesize tri- and tetrapeptides that contain amino acids other than Ala at the C-terminus in ca. 80% yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo502197n | DOI Listing |
Commun Biol
September 2025
Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).
View Article and Find Full Text PDFDev Cell
September 2025
Division of Surgical Sciences, Department of Surgery, UC San Diego Health, 3855 Health Sciences Drive, La Jolla, CA 92037, USA. Electronic address:
In this issue of Developmental Cell, Li et al. show that ETS variant transcription factor 1 (Etv1) SUMOylation not only maintains cancer stem cells (CSCs) but also enables their communications with non-CSC cancer cells to induce tumorigenesis of non-CSCs. The finding reveals a new function of CSCs in driving aggressive tumorigenesis that is SUMOylation dependent.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
DDX6 is known to repress messenger RNA (mRNA) translation and promote mRNA decay in microRNA-mediated silencing. In embryonic stem cells (ESCs), DDX6 primarily functions at the translation level, independent of mRNA destabilization; however, the precise molecular mechanism of how DDX6 represses translation remains unclear. Here, we identify DDX3X as a key downstream target of DDX6-mediated translational repression in ESCs.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No. 100 Waihuanxi Road, Guangzhou 510006, China.
The 5' untranslated region (5'UTR) plays a crucial regulatory role in messenger RNA (mRNA), with modified 5'UTRs extensively utilized in vaccine production, gene therapy, etc. Nevertheless, manually optimizing 5'UTRs may encounter difficulties in balancing the effects of various cis-elements. Consequently, multiple 5'UTR libraries have been created, and machine learning models have been employed to analyze and predict translation efficiency (TE) and protein expression, providing insights into critical regulatory features.
View Article and Find Full Text PDF