Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The purpose of this study was to develop a risk prediction score for distinguishing benign ovarian mass from malignant tumors using CA-125, human epididymis protein 4 (HE4), ultrasound findings, and menopausal status. The risk prediction score was compared to the risk of malignancy index and risk of ovarian malignancy algorithm (ROMA).

Methods: This was a prospective, multicenter (n=6) study with patients from six Asian countries. Patients had a pelvic mass upon imaging and were scheduled to undergo surgery. Serum CA-125 and HE4 were measured on preoperative samples, and ultrasound findings were recorded. Regression analysis was performed and a risk prediction model was developed based on the significant factors. A bootstrap technique was applied to assess the validity of the HE4 model.

Results: A total of 414 women with a pelvic mass were enrolled in the study, of which 328 had documented ultrasound findings. The risk prediction model that contained HE4, menopausal status, and ultrasound findings exhibited the best performance compared to models with CA-125 alone, or a combination of CA-125 and HE4. This model classified 77.2% of women with ovarian cancer as medium or high risk, and 86% of women with benign disease as very-low, low, or medium-low risk. This model exhibited better sensitivity than ROMA, but ROMA exhibited better specificity. Both models performed better than CA-125 alone.

Conclusion: Combining ultrasound with HE4 can improve the sensitivity for detecting ovarian cancer compared to other algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302285PMC
http://dx.doi.org/10.3802/jgo.2015.26.1.46DOI Listing

Publication Analysis

Top Keywords

ultrasound findings
20
risk prediction
16
pelvic mass
12
menopausal status
12
distinguishing benign
8
he4 menopausal
8
status ultrasound
8
risk
8
prediction score
8
ca-125 he4
8

Similar Publications

Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.

View Article and Find Full Text PDF

Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.

View Article and Find Full Text PDF

Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.

View Article and Find Full Text PDF

Background: The treatment of mandibular angle fractures remains controversial, particularly regarding the method of fixation. The primary aim of this study was to compare surgical outcomes following treatment with 1-plate versus 2-plate fixation across two oral and maxillofacial surgery clinics. The secondary aim was to evaluate associations between patient-, trauma-, and procedure-specific factors with postoperative complications and to identify high-risk patients for secondary osteosynthesis.

View Article and Find Full Text PDF

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF