98%
921
2 minutes
20
Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films synthesised by chemical vapour deposition (CVD) can be grown with relatively few defects, the required transfer process creates wrinkles and polymer residues that greatly reduce its performance in device applications. Graphene synthesised on silicon carbide (SiC) has shown outstanding mobility and has been successfully used to develop ultra-high frequency transistors; however, this fabrication method is limited due to the use of costly ultra-high vacuum (UHV) equipment that can reach temperatures over 1500 °C. Here, we show a simple and novel approach to synthesise graphene on SiC substrates that greatly reduces the temperature and vacuum requirements and allows the use of equipment commonly used in the semiconductor processing industry. In this work, we used plasma treatment followed by annealing in order to obtain large-scale graphene films from bulk SiC. After exposure to N2 plasma, the annealing process promotes the reaction of nitrogen ions with Si and the simultaneous condensation of C on the surface of SiC. Eventually, a uniform, large-scale, n-type graphene film with remarkable transport behaviour on the SiC wafer is achieved. Furthermore, graphene field effect transistors (FETs) with high carrier mobilities on SiC were also demonstrated in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4nr04486j | DOI Listing |
Int J Biol Macromol
September 2025
Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran. Electronic address:
In order to develop an alternate material for energy storage devices like batteries, this research is being done to create polymer electrolytes based on cellulose as natural polymer. Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting to prepare a thin polymer films.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Bioengineering, Yildiz Technical University, Istanbul, 34722, Turkey.
Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.
View Article and Find Full Text PDFACS Omega
September 2025
Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
For photodetection applications using 3D hybrid perovskites (HPs), dense and thick films or compacted powders in wafer form are needed and generally require large amounts of HPs. HPs are also often combined with a graphene/carbon layer to improve their conductivity. Among HP synthesis methods, mechanosynthesis, a green synthesis method, provides a large amount of powders, which are furthermore easily densified in compact wafers due to their mechanical activation.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
Molybdenum disulfide (MoS) has recently emerged as a promising material for the development of triboelectric nanogenerators (TENGs) owing to its inherently negative triboelectric properties when paired with polymeric layers, along with its notable transparency and mechanical flexibility. However, MoS-based TENGs operating in the contact-separation mode encounter critical limitations, including mechanical wear and limited triboelectric performance, particularly within the constraints of conventional 2D geometries. This paper reports the novel one-step laser-assisted synthesis of hemispherical MoS through the controlled nucleation and growth of MoS precursor seeds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States.
To assess the efficacy of a mixed-dimensional van der Waals (vdW) heterostructure in modulating the optoelectronic responses of nanodevices, the charge transport properties of the transition-metal dichalcogenide (TMD)-based heterostructure comprising zero-dimensional (0D) WS quantum dots (QDs) and two-dimensional (2D) MoS flakes are critically analyzed. Herein, a facile strategy was materialized in developing an atomically thin phototransistor assembled from mechanically exfoliated MoS and WS QDs synthesized using a one-pot hydrothermal route. The amalgamated photodetectors exhibited a high responsivity of ∼8000 A/W at an incident power of 0.
View Article and Find Full Text PDF