Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Functional imaging studies consistently report abnormal amygdala activity in major depressive disorder (MDD). Neuroanatomical correlates are less clear: imaging studies have produced mixed results on amygdala volume, and postmortem neuroanatomic studies have only examined cell densities in portions of the amygdala or its subregions in MDD. Here, we present a stereological analysis of the volume of, and the total number of, neurons, glia, and neurovascular (pericyte and endothelial) cells in the basolateral amygdala in MDD. Postmortem tissues from 13 subjects with MDD and 10 controls were examined. Sections (~15/subject) taken throughout the rostral-caudal extent of the basolateral amygdala (BLA) were stained for Nissl substance and utilized for stereological estimation of volume and cell numbers. Results indicate that depressed subjects had a larger lateral nucleus than controls and a greater number of total BLA neurovascular cells than controls. There were no differences in the number or density of neurons or glia between depressed and control subjects. These findings present a more detailed picture of BLA cellular anatomy in depression than has previously been available. Further studies are needed to determine whether the greater number of neurovascular cells in depressed subjects may be related to increased amygdala activity in depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388764PMC
http://dx.doi.org/10.1007/s00429-014-0900-zDOI Listing

Publication Analysis

Top Keywords

basolateral amygdala
12
amygdala volume
8
volume cell
8
cell numbers
8
major depressive
8
depressive disorder
8
imaging studies
8
amygdala activity
8
neurons glia
8
depressed subjects
8

Similar Publications

Reduction in reward-driven behaviour depends on the basolateral but not central nucleus of the amygdala in female rats.

J Neurosci

September 2025

Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada, H4B 1R6

Adaptive behavior depends on a dynamic balance between acquisition and extinction memories. Male and female rodents differ in extinction learning rates, suggestion potential sex-based differences in this balance. In males, deletion of extinction-recruited neurons in the central nucleus (CN) of the amygdala impairs extinction retrieval, shifting behavior toward acquisition (Lay et al.

View Article and Find Full Text PDF

While cognitive function remains stable for majority of the lifespan, many functions sharply decline in later life. Women have higher rates of neurodegenerative diseases that involve memory loss, including Alzheimer's disease. This sex disparity may be due to longer life expectancies when compared to men; women outlive men by roughly 5 years globally.

View Article and Find Full Text PDF

Bidirectional modulation of somatostatin-expressing interneurons in the basolateral amygdala reduces neuropathic pain perception in mice.

Front Pain Res (Lausanne)

August 2025

Department of Biomedical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY, United States.

Introduction: Neuropathic pain is characterized by mechanical allodynia and thermal (heat and cold) hypersensitivity, yet the underlying neural mechanisms remain poorly understood.

Methods: Using chemogenetic excitation and inhibition, we examined the role of inhibitory interneurons in the basolateral amygdala (BLA) in modulating pain perception following nerve injury.

Results: Chemogenetic excitation of parvalbumin-positive (PV) interneurons significantly alleviated mechanical allodynia but had minimal effects on thermal hypersensitivity.

View Article and Find Full Text PDF

Alterations in neural oscillations reveal transient impairment of working memory in key brain regions after indoor toluene exposure.

Sci Total Environ

August 2025

Department of Intensive Care Medicine, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tia

Indoor toluene exposure impairs working memory (WM), particularly during the encoding phase; however, the underlying dynamic effects on WM-specific neural circuits remain incompletely understood. The ventral hippocampus (vHPC), medial prefrontal cortex (mPFC), and basolateral amygdala (BLA) are key regions involved in WM encoding circuits. Using multichannel microelectrode array technology, the local field potentials (LFPs) were recorded from these regions in a rodent model during a 4-hour exposure to low concentrations of toluene (0, 17.

View Article and Find Full Text PDF

Projection-specific roles of basolateral amygdala Thy1 neurons in alcohol-induced place preference.

Mol Psychiatry

August 2025

Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.

Alcohol seeking during abstinence is mediated in part by strong associations between the pharmacological effects of alcohol and the environment within which alcohol is administered. The amygdala, particularly the basolateral amygdala (BLA), is a key neural substrate of environmental cue and reward associations since it is involved in associative learning and memory recall. However, we still lack a clear understanding of how alcohol affects the activity of BLA neurons, which may encode information that drives environmental cue-dependent, alcohol-related behaviors.

View Article and Find Full Text PDF