98%
921
2 minutes
20
A food poisoning incident due to ingestion of unknown octopus occurred in Taipei in December, 2010. The serum and urine from victims (male 38 and 43 years old) were collected, determined the toxicity, and identified tetrodotoxin (TTX) by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS). It was found that only urine contained the trace of TTX. Then, two retained specimen (one without blue ring in the skin and another with small blue ring in the skin) were collected from victims and examined for the toxicity and toxin. Meanwhile, 6 specimens of octopus without blue ring in the skin and 4 specimens of octopus with blue ring in the skin were re-collected from the market. Both retained octopus samples were found to contain TTX. However, re-collected market's octopus without blue ring in the skin did not show to contain TTX the and was identified as Octopus aegina by using the analysis of cytochrome b gene (Cyt b) and cytochrome c oxidase subunit I gene (COI). Only octopus with blue ring in the skin contained TTX and was identified as Hapalochlaena fasciata by using the analysis of Cyt b and COI. Therefore, this octopus food poisoning was caused by toxic octopus H. fasciata and the causative agent was TTX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2014.09.009 | DOI Listing |
Cell Biochem Biophys
September 2025
Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.
Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
Antibacterial photodynamic therapy offers a promising approach for combating both susceptible and multidrug-resistant pathogens. However, conventional photosensitizers have limitations in terms of poor binding specificity and weak penetration for pathogens. In this study, we developed synergistic photobactericidal polymers that integrate hydrophilic toluidine blue O (TBO) with the lipophilic penetration enhancer citronellol (CT).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
α-Lipoic acid (LA) has recently emerged as an attractive, inexpensive monomer for synthesizing degradable polymers via ring-opening of its 1,2-dithiolane, introducing easily cleavable disulfide linkages into polymer backbones. Reversible addition-fragmentation chain transfer (RAFT) copolymerization with vinyl monomers enables access to degradable poly(disulfide)s with controlled molecular weights. However, conventional thermal RAFT methods suffer from oxygen sensitivity, limited LA incorporation (<40 mol%), and modest degrees of polymerization (DP < 300).
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
Hole transport materials (HTMs) are instrumental in determining the performance and stability of perovskite solar cells (PSCs). Consequently, it is essential to develop suitable HTMs that can effectively facilitate hole extraction and transport within PSCs. In this study, we conducted theoretical investigations utilizing quantum chemistry methods on the promising HTM molecule YZT1, which features a diacetylene-based Zn porphyrin as its core moiety and dibutyl aniline as the donor moiety on either side.
View Article and Find Full Text PDFCommun Chem
August 2025
Department of Life Science, Graduate School of Science, University of Hyogo, Ako, Hyogo, Japan.
Ultraviolet (UV) irradiation of DNA causes genotoxic photolesions, such as carcinogenic pyrimidine(6-4)pyrimidone photoproducts ((6-4)PPs). In many organisms, (6-4)PPs are repaired by (6-4) photolyases, which contain a flavin chromophore and use blue light energy to initiate the catalytic reaction. Although (6-4)PP repair has been shown to require the input of two successive photons, details of the mechanism remain elusive.
View Article and Find Full Text PDF