98%
921
2 minutes
20
Background Cryopreservation is an acknowledged procedure to store vital cells for future biomarker analyses. Few studies, however, have analyzed the impact of the cryopreservation on phenotyping. Methods We have performed a controlled comparison of cryopreserved and fresh cellular aliquots prepared from individual healthy donors. We studied circulating B-cell subset membrane markers and global gene expression, respectively by multiparametric flow cytometry and microarray data. Extensive statistical analysis of the generated data tested the concept that "overall, there are phenotypic differences between cryopreserved and fresh B-cell subsets". Subsequently, we performed a consecutive uncontrolled comparison of tonsil tissue samples. Results By multiparametric flow analysis, we documented no significant changes following cryopreservation of subset frequencies or membrane intensity for the differentiation markers CD19, CD20, CD22, CD27, CD38, CD45, and CD200. By gene expression profiling following cryopreservation, across all samples, only 16 out of 18708 genes were significantly up or down regulated, including FOSB, KLF4, RBP7, ANXA1 or CLC, DEFA3, respectively. Implementation of cryopreserved tissue in our research program allowed us to present a performance analysis, by comparing cryopreserved and fresh tonsil tissue. As expected, phenotypic differences were identified, but to an extent that did not affect the performance of the cryopreserved tissue to generate specific B-cell subset associated gene signatures and assign subset phenotypes to independent tissue samples. Conclusions We have confirmed our working concept and illustrated the usefulness of vital cryopreserved cell suspensions for phenotypic studies of the normal B-cell hierarchy; however, storage procedures need to be delineated by tissue specific comparative analysis. © 2014 Clinical Cytometry Society.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cytob.21192 | DOI Listing |
Cryobiology
September 2025
Laboratory of Teaching and Research in Pathology of Reproduction, Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil. Electronic address:
Sperm capacitation is a critical process for successful fertilization, involving multiple regulated cellular changes. On the other hand, cryopreservation induces membrane changes that can mimic capacitation, potentially leading to misinterpretation of sperm function. Distinguishing true capacitation from cryoinjury remains challenging, as both share surface markers despite involving distinct mechanisms and impacts on fertilization.
View Article and Find Full Text PDFHum Reprod
September 2025
Boston IVF-IVIRMA Global Research Alliance, Waltham, MA, USA.
Study Question: Does a high proportion of immature oocytes impact embryo development and live birth rates in IVF-ICSI cycles?
Summary Answer: While a high proportion of immature oocytes is associated with lower blastocyst formation and reduced preimplantation genetic testing for aneuploidy (PGT-A) utilization, live birth rates remain comparable when key confounders-such as age, BMI, gonadotropin dosage, and metaphase-II (MII) count-are balanced, but cycles with a very low MII proportion resulted in fewer embryo transfers, which is quantitatively limiting, even if embryo quality appears unaffected.
What Is Known Already: Previous studies have linked a lower proportion of mature oocytes (MII) to decreased fertilization rates, abnormal embryo development, and lower pregnancy and live birth rates. However, it remains unclear whether these outcomes are due to quantitative limitations (fewer mature oocytes available) or qualitative deficiencies (intrinsic oocyte quality issues).
J Virol Methods
September 2025
Department of Virology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, PD, Italy. Electronic address:
Since its emergence in 1996, highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/96 lineage have diversified into multiple clades, culminating in the 2020-2021 global panzootic caused by H5N1 viruses of the clade 2.3.4.
View Article and Find Full Text PDFAnim Reprod Sci
September 2025
Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, The Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi.
Despite advances in assisted reproductive technologies (ARTs) such as in vitro fertilization (IVF), fertilization failure remains a major bottleneck in both clinical and animal reproduction, often due to suboptimal sperm selection and premature capacitation processes. One critical but underutilized biological system in sperm selection is the functional sperm reservoir formed in the oviduct after insemination. In this context, spermatozoa bind to epithelial cells in the isthmic region of the oviduct to maintain viability while acquiring fertilization competence until ovulation signals trigger their release from the functional reservoir.
View Article and Find Full Text PDFHum Reprod
September 2025
Institute for the Study of Fertility, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
Study Question: What are the clinical and logistical predictors of sperm viability in posthumous sperm retrieval (PHSR), and how do post-mortem interval (PMI), body refrigeration, and mechanism of death affect outcomes?
Summary Answer: Shorter PMI and body refrigeration significantly enhance post-mortem sperm viability, with the mechanism of death modulating viability patterns in a time-dependent manner.
What Is Known Already: PHSR has gained increasing prominence in reproductive medicine, yet technical aspects remain under-researched. Key questions regarding optimal timing, storage conditions, and cause of death effects on sperm quality lack systematic investigation.