98%
921
2 minutes
20
The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja504270d | DOI Listing |
RSC Adv
July 2025
Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran.
Oral squamous cell carcinoma (OSCC) is the most prevalent form of oral cavity cancer and a leading cause of death globally with low survival rates. Early detection of OSCC is crucial for reducing morbidity and mortality. The microRNA-423-5p, a 23-nucleotide non-coding RNA, is a vital biomarker for accurate OC detection due to its high value in the Receiver Operating Characteristic (ROC) curve, ensuring selectivity for OC.
View Article and Find Full Text PDFTalanta
August 2023
DNA & RNA Sensing Lab, University of Trás-os-Montes e Alto Douro, Department of Genetics and Biotechnology, School of Life Science and Environment, Blocos Laboratoriais Bdg, 5000-801, Vila Real, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Science
Lung cancer is the main malignant cancer reported worldwide, with one of the lowest survival rates. Deletions in the Epidermal Growth Factor Receptor (EGFR) gene are often associated with non-small cell lung cancer (NSCLC), a common subtype of lung cancer. The detection of such mutations provides key information for the diagnosis and treatment of the disease; therefore, the early screening of such biomarkers is of vital importance.
View Article and Find Full Text PDFJ Mol Recognit
February 2022
Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
Due to the role of DNA methylation in causing cancer in the present study, an innovative and inexpensive method was designed for the sensitive detection of DNA methylation. The silver-graphene quantum dots (Ag/GQDs) nano ink with high electrical conductivity was used as a substrate for genosensor fabrication toward identification of DNA hybridization. Also, poly (β-cyclodextrin) (p[β-CD]) has been used as a biointerface for the stabilization of Ag/GQD nano ink.
View Article and Find Full Text PDFPathogens
July 2021
Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Sensors and Biosensors Group, Tunis Faculty of Science, University of Tunis El Manar, Tunis 2092, Tunisia.
We describe the design of a simple and highly sensitive electrochemical bioanalytical method enabling the direct detection of a conserved RNA region within the capsid protein gene of a fish nodavirus, making use of nanostructured disposable electrodes. To achieve this goal, we select a conserved region within the nodavirus RNA2 segment to design a DNA probe that is tethered to the surface of nanostructured disposable screen-printed electrodes. In a proof-of-principle test, a synthetic RNA sequence is detected based on competitive hybridization between two oligonucleotides (biotinylated reporter DNA and target RNA) complimentary to a thiolated DNA capture probe.
View Article and Find Full Text PDFBiosensors (Basel)
March 2021
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
A microfluidic chip for electrochemical impedance spectroscopy (EIS) is presented as bio-sensor for label-free detection of proteins by using the example of cardiac troponin I. Troponin I is one of the most specific diagnostic serum biomarkers for myocardial infarction. The microfluidic impedance biosensor chip presented here consists of a microscope glass slide serving as base plate, sputtered electrodes, and a polydimethylsiloxane (PDMS) microchannel.
View Article and Find Full Text PDF