Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Macrophages play multidimensional roles in hepatic fibrosis, but their control has not been fully understood. The Notch pathway mediated by recombination signal binding protein Jκ (RBP-J), the transcription factor transactivated by signals from four mammalian Notch receptors, is implicated in macrophage activation and plasticity. In this study, by using mouse hepatic fibrosis models, we show that myeloid-specific disruption of RBP-J resulted in attenuated fibrosis. The activation of hepatic stellate cells and production of profibrotic factors including platelet-derived growth factor (PDGF)-B and transforming growth factor beta1 (TGF-β1) reduced significantly in myeloid-specific RBP-J deficient mice. The infiltration of inflammatory cells and production of proinflammatory factors were reduced in liver of myeloid-specific RBP-J-deficient mice during fibrosis. In RBP-J-deficient macrophages, the nuclear factor kappa B (NF-κB) activation was remarkably attenuated as compared with the control. This could be attributed to the up-regulation of cylindromatosis (CYLD), a negative regulator of NF-κB, in Notch signal-compromised macrophages, because the knockdown of CYLD in RBP-J-deficient macrophages or overexpression of p65 in RBP-J knockdown cells both restored NF-κB activation and the production of proinflammatory and/or profibrotic factors by macrophages. In human hepatic fibrosis biopsies, stronger Notch activation is correlated with more severe fibrosis, which is accompanied by a lower level of CYLD but irrespective of etiological reasons.

Conclusion: RBP-J-mediated Notch signaling is required for macrophages to promote hepatic fibrosis by up-regulation of NF-κB activation through CYLD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.27394DOI Listing

Publication Analysis

Top Keywords

hepatic fibrosis
20
nf-κb activation
12
myeloid-specific disruption
8
recombination signal
8
signal binding
8
binding protein
8
protein jκ
8
fibrosis
8
cells production
8
profibrotic factors
8

Similar Publications

Agranulocytosis is an extremely rare but potentially fatal immune-related adverse event (irAE) induced by immune checkpoint inhibitors (ICIs). Its management, particularly following combination therapies such as durvalumab/tremelimumab (Dur/Tre) for hepatocellular carcinoma (HCC), is challenging owing to limited data. We herein report a 79-year-old man with HCC who developed severe Dur/Tre-induced agranulocytosis that was refractory to granulocyte colony-stimulating factor, high-dose corticosteroids, and intravenous immunoglobulin.

View Article and Find Full Text PDF

Introduction: Combined vascular endothelial growth factor/programmed death-ligand 1 blockade through atezolizumab/bevacizumab (A/B) is the current standard of care in advanced hepatocellular carcinoma (HCC). A/B substantially improved objective response rates compared with tyrosine kinase inhibitor sorafenib; however, a majority of patients will still not respond to A/B. Strong scientific rationale and emerging clinical data suggest that faecal microbiota transfer (FMT) may improve antitumour immune response on PD-(L)1 blockade.

View Article and Find Full Text PDF

Neonatal Liver-Derived FTH1-Enriched Extracellular Vesicles Attenuate Ferroptosis and Ameliorate MASLD Pathogenesis.

Free Radic Biol Med

September 2025

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver pathology, lacks effective therapies. This study identifies ferroptosis-a lipid peroxidation-driven, iron-dependent form of cell death-as a central pathogenic mechanism in MASLD. Integrative proteomic and histopathological analyses of human and murine MASLD livers revealed marked ferroptosis activation, characterized by dysregulated iron metabolism (reduced FTH1 and GPX4; elevated ACSL4) and oxidative stress.

View Article and Find Full Text PDF