Region-specific sensitivity of anemophilous pollen deposition to temperature and precipitation.

PLoS One

Palaeoecology, Department of Physical Geography, Faculty of Geosciences, Utrecht University, Laboratory of Palaeobotany and Palynology, Utrecht, The Netherlands.

Published: May 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect annual past climate variability, and can be used in palaeoecological and -climatological studies to bridge between population- and species-scale responses to climate forcing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136776PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104774PLOS

Publication Analysis

Top Keywords

temperature precipitation
8
climate variables
8
pollen influx
8
pollen
5
climate
5
region-specific sensitivity
4
sensitivity anemophilous
4
anemophilous pollen
4
pollen deposition
4
deposition temperature
4

Similar Publications

The fruit fly Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) is one of the main pests in apple orchards. Artificial neural networks (ANNs) are tools with good ability to predict phenomena such as the seasonal dynamics of pest populations. Thus, the objective of this work was to determine a prediction model for the seasonal dynamics of A.

View Article and Find Full Text PDF

Addressing underrepresented homicide and climate data in forensic science: The case for new human taphonomy facilities in tropical regions.

Sci Justice

September 2025

School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom; Coventry University, School of Science, Coventry CV1 2DS, United Kingdom.

This review explores the geographical distribution of human taphonomy facilities (HTFs) in connection to climate and homicide rates from the 50 most impacted cities worldwide. Existing HTFs depict temperate climates, omitting tropical and arid areas. This underrepresentation impairs accurate post-mortem interval (PMI) estimates and limits the applicability of findings to global contexts.

View Article and Find Full Text PDF

Toward ecological forecasting of West Nile virus in Florida: Insights from two decades of sentinel chicken surveillance.

Sci Total Environ

September 2025

Florida Medical Entomology Laboratory, IFAS, University of Florida, Vero Beach, Florida 32962, United States of America; Department of Entomology and Nematology, IFAS, University of Florida, Gainesville, Florida 32611, United States of America.

West Nile Virus (WNV) is the leading cause of mosquito-borne disease in the United States, yet transmission activity remains difficult to predict. The present study used 20 years of digitized WNV seroconversion data from 526 sentinel chicken coops across Florida to develop spatiotemporal models with landscape and climate variables to predict WNV seroconversion at monthly and seasonal timescales. We found several environmental predictors hypothesized to impact WNV transmission were important at both timescales.

View Article and Find Full Text PDF

Machine Learning Approaches for Predicting Head Blight Epidemic Levels from Climatological Time-Series Features.

Phytopathology

September 2025

Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Xinong Road #22, Yangling, Shaanxi, China, 712100.

head blight (FHB), caused by the FHB species complex, is one of the most damaging diseases affecting wheat. Accurately predicting FHB occurrence prior to infection is crucial for preventing outbreaks, minimizing crop losses, and reducing the risks of mycotoxins entering the food chain. This study utilized 55 years of historical weather data and the level of primary inoculum in crop debris to predict FHB severity.

View Article and Find Full Text PDF

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF