98%
921
2 minutes
20
The paired box gene 6 (PAX6) is a powerful mediator of eye and brain organogenesis whose spatiotemporal expression is exquisitely controlled by multiple mechanisms, including post-transcriptional regulation by microRNAs (miRNAs). In the present study, we use bioinformatic predictions to identify three candidate microRNA-7 (miR-7) target sites in the human PAX6 3' untranslated region (3'-UTR) and demonstrate that two of them are functionally active in a human cell line. Furthermore, transient transfection of cells with synthetic miR-7 inhibits PAX6 protein expression but does not alter levels of PAX6 mRNA, suggesting that miR-7 induces translational repression of PAX6. Finally, a comparison of PAX6 3'-UTRs across species reveals that one of the functional miR-7 target sites is conserved, whereas the second functional target site is found only in primates. Thus, the interaction between PAX6 and miR-7 appears to be highly conserved; however, the precise number of sites through which this interaction occurs may have expanded throughout evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116382 | PMC |
http://dx.doi.org/10.4137/EBO.S13739 | DOI Listing |
Invest Ophthalmol Vis Sci
September 2025
The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester, United Kingdom.
Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.
Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.
Am J Surg Pathol
September 2025
Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
Embryonic-type neuroectodermal tumor (ENT; previously referred to as primitive neuroectodermal tumor, PNET) of the testis and gynecologic tract share morphologic features with small round blue cell tumors, including Ewing sarcoma (ES), yet are biologically, therapeutically, and prognostically distinct. The diagnosis of ENT can be challenging, and it is unclear if there are reliable biomarkers that can be used to confirm this diagnosis. This study characterized 50 ENTs arising from the testis (n=38) and gynecologic tract (n=12; 7 ovary/5 uterus) with 27 biomarkers (AE1/AE3, ATRX, CD99, chromogranin-A, Cyclin D1, Fli-1, GFAP, GLUT-1, IDH1/2, INSM1, MTAP, NANOG, Nestin, neurofilament, NKX2.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai 200040, China. Electronic address:
Purpose: Blue light exposure constitutes a risk factor for dry eye. The research explores the influence of conjunctival stem cells (CjSCs) by blue light, elucidating the pathogenesis of blue light-induced dry eye.
Materials And Methods: Primary SD rat CjSCs and rats were irradiated with blue light at 460 nm.
PLoS One
September 2025
Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Neural crest stem cells (NCSCs) compose a highly migratory, multipotent, stem cell population arising from the neural plate border of the embryonic ectoderm. Investigating the development of NCSCs is critical in understanding both embryonic development and abnormal events that underlie neurocristopathies. Suggested seeding densities in in vitro human induced pluripotent stem cells (hiPSCs) differentiation protocols, varying between 10,000 cells/cm2 and 200,000 cells/cm2, demonstrate a lack of consensus on the optimal conditions to obtain NCSCs.
View Article and Find Full Text PDFEmbryonic development follows a conserved sequence of events across species, yet the pace of development is highly variable and particularly slow in humans. Species-specific developmental timing is largely recapitulated in stem cell models, suggesting a cell-intrinsic clock. Here we use directed differentiation of human embryonic stem cells into neuroectoderm to perform a whole-genome CRISPR-Cas9 knockout screen and show that the epigenetic factors Menin and SUZ12 modulate the speed of PAX6 expression during neural differentiation.
View Article and Find Full Text PDF