98%
921
2 minutes
20
The association of microglia with brain vasculature during development and the reduced brain vascular complexity in microglia-deficient mice suggest the role of microglia in cerebrovascular angiogenesis. However, the underlying molecular mechanism remains unclear. Here, using an in vitro angiogenesis model, we found the culture supernatant of BV2 microglial cells significantly enhanced capillary-like tube formation and migration of brain microvascular endothelial cells (BMECs). The expression of angiogenic factors, ephrin-A3 and ephrin-A4, were specifically upregulated in BMECs exposed to BV2-derived culture supernatant. Knockdown of ephrin-A3 and ephrin-A4 in BMECs by siRNA significantly attenuated the enhanced angiogenesis and migration of BMECs induced by BV2 supernatant. Our further results indicated that the ability of BV2 supernatant to promote endothelial angiogenesis was caused by the soluble tumor necrosis factor α (TNF-α) released from BV2 microglial cells. Moreover, the upregulations of ephrin-A3 and ephrin-A4 in BMECs in response to BV2 supernatant were effectively abolished by neutralization antibody against TNF-α and TNF receptor 1, respectively. The present study provides evidence that microglia upregulates endothelial ephrin-A3 and ephrin-A4 to facilitate in vitro angiogenesis of brain endothelial cells, which is mediated by microglia-released TNF-α.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.22998 | DOI Listing |
Neurosci Lett
January 2021
Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe 668-8558 Japan.
Ephrin family proteins are cell surface molecules that regulate several cellular functions through cell-cell interactions. During nervous tissue repair after injury, the expression of ephrin subtypes in astrocytes is altered, affecting the axonal elongation and migration of neuronal precursors. However, the mechanism regulating the expression of ephrin subtypes in astrocytes has not been investigated.
View Article and Find Full Text PDFCancer Genomics Proteomics
June 2021
Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, U.S.A.
Background/aim: Breast cancer cell lines consist of bulk tumor cells and a small proportion of stem-like cells. While the bulk cells are known to express a distinct combination of Eph receptors and ephrin ligands, the transcript profiles of stem-like cells in these cell lines have not been adequately characterized. The aim of this study was to determine Eph receptor/ephrin ligand profiles of cancer stem cells specific to a triple negative breast carcinoma cell line.
View Article and Find Full Text PDFNeuropharmacology
November 2020
Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. Electronic address:
Previous studies have demonstrated that EphA4 participates in neuronal injury, and there is a strong interaction between ephrinA3 and EphA4. In this study, we showed that in a rat chronic ocular hypertension (COH) experimental glaucoma model, expression of EphA4 and ephrinA3 proteins was increased in retinal cells, including retinal ganglion cells (RGCs) and Müller cells, which may result in ephrinA3/EphA4 forward signaling activation on RGCs, as evidenced by increased p-EphA4/EphA4 ratio. Intravitreal injection of ephrinA3-Fc, an activator of EphA4, mimicked the effect of COH on p-EphA4/EphA4 and induced an increase in TUNEL-positive signals in normal retinas, which was accompanied by dendritic spine retraction and thinner dendrites in RGCs.
View Article and Find Full Text PDFAnat Rec (Hoboken)
October 2014
Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, 110001, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110001, China.
The association of microglia with brain vasculature during development and the reduced brain vascular complexity in microglia-deficient mice suggest the role of microglia in cerebrovascular angiogenesis. However, the underlying molecular mechanism remains unclear. Here, using an in vitro angiogenesis model, we found the culture supernatant of BV2 microglial cells significantly enhanced capillary-like tube formation and migration of brain microvascular endothelial cells (BMECs).
View Article and Find Full Text PDFEur J Neurosci
December 2013
Department of Health Sciences and Technology, Brain Research Institute, University of Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Adult central nervous system axons show restricted growth and regeneration properties after injury. One of the underlying mechanisms is the activation of the Nogo-A/Nogo receptor (NgR1) signaling pathway. Nogo-A knockout (KO) mice show enhanced regenerative growth in vivo, even though it is less pronounced than after acute antibody-mediated neutralization of Nogo-A.
View Article and Find Full Text PDF