CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies.

Bioinformatics

School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS and School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, BS8 1TD, Bristol, UK School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS and School of Biochemistry, University of Bris

Published: November 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models.

Results: We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures.

Availability And Implementation: CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201159PMC
http://dx.doi.org/10.1093/bioinformatics/btu502DOI Listing

Publication Analysis

Top Keywords

natural proteins
8
coiled-coil
6
protein
6
ccbuilder
5
models
5
ccbuilder interactive
4
interactive web-based
4
web-based tool
4
tool building
4
building designing
4

Similar Publications

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.

View Article and Find Full Text PDF

Engineering resistance genes against tomato brown rugose fruit virus.

Sci China Life Sci

September 2025

MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.

View Article and Find Full Text PDF

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF