Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Bovine hereditary zinc deficiency (BHZD) is an autosomal recessive disorder of cattle, first described in Holstein-Friesian animals. Affected calves suffer from severe skin lesions and show a poor general health status. Recently, eight calves with the phenotypic appearance of BHZD have been reported in the Fleckvieh cattle population.

Results: In spite of the similar disease phenotypes, SLC39A4, the gene responsible for BHZD in Holstein-Friesian was excluded as underlying gene for the disorder in the affected Fleckvieh calves. In order to identify the disease-associated region, genotypes of eight affected calves obtained with the Illumina BovineHD BeadChip comprising 777,962 SNPs were contrasted with the genotypes of 1,339 unaffected animals. A strong association signal was observed on chromosome 21 (P = 5.87 × 10(-89)). Autozygosity mapping in the eight affected animals revealed a common segment of extended homozygosity encompassing 1,023 kb (BTA 21: 70,550,045 - 71,573,501). This region contains 17 genes/transcripts, among them two genes encoding gastro-intestinal zinc transporters (CRIP1, CRIP2). However, no mutation that was compatible with recessive inheritance could be detected in these candidate genes. One of the affected calves was re-sequenced together with 42 unaffected Fleckvieh animals. Analysis of the sequencing data revealed a nonsense mutation (p.W215X) in a phospholipase encoding gene (PLD4) as candidate causal polymorphism. To confirm the causality, genotypes of the p.W215X-mutation were obtained from 3,650 animals representing three different breeds. None of the unaffected animals was homozygous for the defect allele, while all eight affected calves were homozygous. The deleterious effect of the mutation is manifested in a significantly lower survival rate of descendants from risk matings when compared with the survival rate of descendants from non-risk matings. The deleterious allele has an estimated frequency of 1.1% in the Fleckvieh population.

Conclusion: Our results provide strong evidence that a newly identified recessive disorder in the Fleckvieh population is caused by a nonsense mutation in PLD4, most likely resulting in an impaired function of the encoded protein. Although the phenotype of affected calves strongly resembles BHZD, a zinc deficiency resulting from malabsorption is unlikely to be responsible for the diseased Fleckvieh calves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117962PMC
http://dx.doi.org/10.1186/1471-2164-15-623DOI Listing

Publication Analysis

Top Keywords

nonsense mutation
12
mutation pld4
8
fleckvieh cattle
8
zinc deficiency
8
recessive disorder
8
calves
8
disorder fleckvieh
8
fleckvieh calves
8
unaffected animals
8
survival rate
8

Similar Publications

Neutral Lipid Storage Disease with Myopathy (NLSDM) is a rare lipid metabolism disorder caused by impaired Adipose Triglyceride Lipase (ATGL) activity, leading to neutral lipid accumulation in various tissues. It typically manifests with progressive skeletal myopathy, with an onset of around 35 years. In addition, some patients develop cardiomyopathy and liver dysfunction.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) catalyze the aminoacylation of tRNA with their cognate amino acids, an essential step in protein biosynthesis. While biallelic mutations in aaRSs often result in severe multi-organ dysfunction accompanied by developmental delays, monoallelic mutations typically cause milder, tissue-specific symptoms. However, a de novo monoallelic nonsense mutation (R534*) in the asparaginyl-tRNA synthetase (AsnRS)-resulting in a premature stop codon and 15-residue C-terminal truncation-has been identified in multiple families and is associated with severe neurodevelopmental symptoms.

View Article and Find Full Text PDF

Background Over 300 mutations in have been identified as causes of early-onset Alzheimer's disease (EOAD). While these include missense mutations and a few insertions, deletions, or duplications, none result in open reading frame shifts, and all alter γ-secretase function to increase the long/short Aβ ratio. Methods We identified a novel heterozygous nonsense variant, c.

View Article and Find Full Text PDF

The spike tip protein of bacteriophage T4.

bioRxiv

August 2025

Previous affiliation: Dpt of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland.

Contractile injection systems (CISs) - bacteriophage tails, tailocins, and bacterial type VI secretion systems - penetrate the envelope of the target cell by employing a contractile sheath-rigid tube mechanism. The membrane-attacking end of the tube carries a spike-shaped complex that ends with a spike tip. In bacteriophage P2, the spike and spike tip proteins are fused, and we used this phage to show that sheath contraction results in the translocation of the spike into the periplasm of the host cell.

View Article and Find Full Text PDF

P/Q-type (Ca2.1) Ca channels regulate the release of neurotransmitter at central synapses. Missense and nonsense mutations in CACNA1A, the gene that encodes the principal α subunit of the Ca2.

View Article and Find Full Text PDF