98%
921
2 minutes
20
The structural understanding of eukaryotic translation lags behind that of translation on bacterial ribosomes. Here, we present two subnanometer resolution structures of S. cerevisiae 80S ribosome complexes formed with either one or two tRNAs and bound in response to an mRNA fragment containing the Kozak consensus sequence. The ribosomes adopt two globally different conformations that are related to each other by the rotation of the small subunit. Comparison with bacterial ribosome complexes reveals that the global structures and modes of intersubunit rotation of the yeast ribosome differ significantly from those in the bacterial counterpart, most notably in the regions involving the tRNA, small ribosomal subunit, and conserved helix 69 of the large ribosomal subunit. The structures provide insight into ribosome dynamics implicated in tRNA translocation and help elucidate the role of the Kozak fragment in positioning an open reading frame during translation initiation in eukaryotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142436 | PMC |
http://dx.doi.org/10.1016/j.str.2014.06.003 | DOI Listing |
APMIS
September 2025
Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.
Clinical microbiology involves the detection and differentiation of primarily bacteria, viruses, parasites and fungi in patients with infections. Billions of people may be colonised by one or more species of common luminal intestinal parasitic protists (CLIPPs) that are often detected in clinical microbiology laboratories; still, our knowledge on these organisms' impact on global health is very limited. The genera Blastocystis, Dientamoeba, Entamoeba, Endolimax and Iodamoeba comprise CLIPPs species, the life cycles of which, as opposed to single-celled pathogenic intestinal parasites (e.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy. Electronic address:
Fish is one of the most common causes of food allergy. The global prevalence of fish allergy has increased over the years as a result of the increased fish consumption. In allergic individuals even small amounts of allergen can trigger a life-threatening allergic reaction.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh;
Recent advances have enabled the Protein synthesis Using Recombinant Elements (PURE) cell-free system to be produced in individual laboratories economically and with reduced labor burden. However, the preparation of the 36 protein components and ribosome, which make up PURE, is still a complex undertaking, with much scope for variation and error. We present a detailed and updated procedure to manufacture PURE based on the recently published OnePot protocol, which involves regulating a number of key steps, in particular, the inoculation of cultures using optical density (OD)-normalized glycerol stocks, careful monitoring of cell growth, and controlling final glycerol concentrations.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon.
In Gram-negative bacteria, resistance-nodulation-division (RND)-type efflux pumps, particularly AcrAB-TolC, play a critical role in mediating resistance to antimicrobial agents and toxic metabolites, contributing to multidrug resistance. is an entomopathogenic bacterium that has garnered significant interest due to its production of bioactive specialized metabolites with anti-inflammatory, antimicrobial, and scavenger deterrent properties. In previous work, we demonstrated that AcrAB confers self-resistance to stilbenes in TT01.
View Article and Find Full Text PDFmSphere
September 2025
Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.
Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.
View Article and Find Full Text PDF