Negative density dependence of seed dispersal and seedling recruitment in a neotropical palm.

Ecol Lett

Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancon, Republic of Panama; Department of Environmental Sciences, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands; Community and Conservation Ecology group, University of Groningen, PO Box 11103, 9700 CC, Groninge

Published: September 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.12317DOI Listing

Publication Analysis

Top Keywords

population density
16
seed dispersal
12
negative density
8
density dependence
8
seed
8
seedling recruitment
8
ndd recruitment
8
competition dispersers
8
dispersal
7
density
6

Similar Publications

This study presents a comprehensive first-principles and device-performance investigation of alkali metal-based anti-perovskites ZBrO (Z = K, Rb, Cs, and Fr) for advanced optoelectronic and photovoltaic applications. Using density functional theory (DFT) with GGA-PBE and mGGA-rSCAN functionals, we analyzed the structural, electronic, optical, mechanical, phonon, population, and thermoelectric properties of these compounds. All ZBrO materials exhibit direct band gaps and strong optical absorption in the visible-UV spectrum.

View Article and Find Full Text PDF

Successful biological control requires accurate knowledge of the host preference of the released parasitoid. Telenomus remus Nixon (1973) is an effective parasitoid of Spodoptera frugiperda (J.E.

View Article and Find Full Text PDF

The fruit fly Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) is one of the main pests in apple orchards. Artificial neural networks (ANNs) are tools with good ability to predict phenomena such as the seasonal dynamics of pest populations. Thus, the objective of this work was to determine a prediction model for the seasonal dynamics of A.

View Article and Find Full Text PDF

Population size in stochastic discrete-time ecological dynamics.

J Math Biol

September 2025

Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX, 77843-3368, United States.

We study how environmental stochasticity influences the long-term population size in certain one- and two-species models. The difficulty is that even when one can prove that there is coexistence, it is usually impossible to say anything about the invariant probability measure which describes the coexisting species. We are able to circumvent this problem for some important ecological models by noticing that the per-capita growth rates at stationarity are zero, something which can sometimes yield information about the invariant probability measure.

View Article and Find Full Text PDF

Transition behavior of the waiting time distribution in a stochastic model with the internal state.

J Math Biol

September 2025

School of Mathematical Sciences and Institute of Natural Sciences, MOE-LSC, CMA-Shanghai, Shanghai Jiao Tong University, Shanghai, China.

It has been noticed that when the waiting time distribution exhibits a transition from an intermediate time power-law decay to a long-time exponential decay in the continuous time random walk model, a transition from anomalous diffusion to normal diffusion can be observed at the population level. However, the mechanism behind the transition of waiting time distribution is rarely studied. In this paper, we provide one possible mechanism to explain the origin of such a transition.

View Article and Find Full Text PDF