The strength of an Ig switch region is determined by its ability to drive R loop formation and its number of WGCW sites.

Cell Rep

USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; Molecular and Computational Biology Section, Department of Biological Sciences, USC Dornsife, University of Southern California, Los Angeles, CA 90033, USA; Departments of Pathology, Biochemistry

Published: July 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

R loops exist at the murine IgH switch regions and possibly other locations, but their functional importance is unclear. In biochemical systems, R loop initiation requires DNA sequence regions containing clusters of G nucleotides, but cellular studies have not been done. Here, we vary the G-clustering, total switch region length, and the number of target sites (WGCW sites for the activation-induced deaminase) at synthetic switch regions in a murine B cell line to determine the effect on class switch recombination (CSR). G-clusters increase CSR regardless of their immediate proximity to the WGCW sites. This increase is accompanied by an increase in R loop formation. CSR efficiency correlates better with the absolute number of WGCW sites in the switch region rather than the total switch region length or density of WGCW sites. Thus, the overall strength of the switch region depends on G-clusters, which initiate R loop formation, and on the number of WGCW sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118936PMC
http://dx.doi.org/10.1016/j.celrep.2014.06.021DOI Listing

Publication Analysis

Top Keywords

wgcw sites
24
switch region
20
loop formation
12
number wgcw
12
strength switch
8
formation number
8
switch regions
8
total switch
8
region length
8
sites
7

Similar Publications

Somatic hypermutation (SHM) of the immunoglobulin variable (IgV) loci is a key process in antibody affinity maturation. The enzyme activation-induced deaminase (AID), initiates SHM by creating C → U mismatches on single-stranded DNA (ssDNA). AID has preferential hotspot motif targets in the context of WRC/GYW (W = A/T, R = A/G, Y = C/T) and particularly at WGCW overlapping hotspots where hotspots appear opposite each other on both strands.

View Article and Find Full Text PDF

The targeting of mutations by Activation-Induced Deaminase (AID) is a key step in generating antibody diversity at the Immunoglobulin (Ig) loci but is also implicated in B-cell malignancies such as chronic lymphocytic leukemia (CLL). AID has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) hotspots. WGCW sites, which contain an overlapping WRC hotspot on both DNA strands, mutate at much higher frequency than single hotspots.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq).

View Article and Find Full Text PDF

The strength of an Ig switch region is determined by its ability to drive R loop formation and its number of WGCW sites.

Cell Rep

July 2014

USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; Molecular and Computational Biology Section, Department of Biological Sciences, USC Dornsife, University of Southern California, Los Angeles, CA 90033, USA; Departments of Pathology, Biochemistry

R loops exist at the murine IgH switch regions and possibly other locations, but their functional importance is unclear. In biochemical systems, R loop initiation requires DNA sequence regions containing clusters of G nucleotides, but cellular studies have not been done. Here, we vary the G-clustering, total switch region length, and the number of target sites (WGCW sites for the activation-induced deaminase) at synthetic switch regions in a murine B cell line to determine the effect on class switch recombination (CSR).

View Article and Find Full Text PDF

BCL6 breaks occur at different AID sequence motifs in Ig-BCL6 and non-Ig-BCL6 rearrangements.

Blood

May 2013

Norris Comprehensive Cancer Center, Department of Pathology, Biochemistry, and Molecular Biology, University of Southern California, Los Angeles, CA, USA.

BCL6 translocations are common in B-cell lymphomas and frequently have chromosomal breaks in immunoglobulin heavy chain (IgH) switch regions, suggesting that they occur during class-switch recombination. We analyze 120 BCL6 translocation breakpoints clustered in a 2156-bp segment of BCL6 intron 1, including 62 breakpoints (52%) joined to IgH, 12 (10%) joined to Ig light chains, and 46 (38%) joined to non-Ig partners. The BCL6 breaks in Ig-BCL6 translocations prefer known activation-induced cytosine deaminase (AID) hotspots such as WGCW and WRC (W = A/T, R = A/G), whereas BCL6 breaks in non-Ig rearrangements occur at CpG/CGC sites in addition to WGCW.

View Article and Find Full Text PDF