Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exposure to particulate matter (PM), a component of urban air pollution, may cause adverse effects in the brain. Although the exact mechanisms involved are unknown, both oxidative and inflammatory responses have been reported. Since the main route of exposure to particulate matter is through inhalation, there is a potential for compounds to directly enter the brain and alter normal cellular function. Enhancement in both oxidative stress and neuroinflammatory markers has been observed in neurodegenerative disorders and PM-induced potentiation of these events may accelerate the disease process. The objective of this pilot study was to use normal human brain cells, a model system which has not been previously used, to assess cell-type-specific responses after exposure to ultrafine particles (UFP). Human microglia, neurons, and astrocytes were grown separately or as co-cultures and then exposed to aqueous UFP suspensions. Reactive Oxygen Species (ROS) formation and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) were measured as markers of oxidative stress or inflammation respectively. Our results revealed that after exposure to 2 μg/ml of particles, normal human neurons exhibit a decrease in ROS formation and an increase in TNF-α. The observed decrease in ROS formation persisted in the presence of glial cells, which contrasts previous studies done in rodent cells reporting that PM-induced microglial activation modulates neuronal responses. Our study indicates that human CNS cells may respond differently compared to rodent cells and that their use may be more predictive in risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2014.06.015DOI Listing

Publication Analysis

Top Keywords

particulate matter
12
ros formation
12
human brain
8
cells respond
8
exposure particulate
8
oxidative stress
8
normal human
8
decrease ros
8
rodent cells
8
cells
6

Similar Publications

The Expanded Regulatory Significance of Saharan Dust Plumes in the United States.

Environ Sci Technol

September 2025

Baton Rouge Complex, ExxonMobil, Baton Rouge, 5955 Scenic Hwy, Louisiana 70805, United States.

Given the recent reduction in the U.S. National Ambient Air Quality Standard (NAAQS) for annual PM from 12 to 9 μg m, the contribution of exceptional, though natural, particulate transport events has assumed greater regulatory relevance.

View Article and Find Full Text PDF

Ambient Air Pollution and the Severity of Alzheimer Disease Neuropathology.

JAMA Neurol

September 2025

Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.

Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.

View Article and Find Full Text PDF

Characterization on Respiratory Bioaccessibility of Organophosphate Esters Based on a Mouth-Throat Model, Exhaled Breath Condensate, and Sputum.

Environ Sci Technol

September 2025

School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.

To characterize the bioaccessibility of inhaled organophosphate esters (OPEs) in the respiratory tract, we employed a highly idealized mouth-throat model to investigate the occurrence, distribution, and deposition of 17 OPEs in airborne particulate matter (PM, PM, and PM; = 80 pairs) and gas phases ( = 48) under gradient temperature and humidity. OPEs concentrations were also measured in exhaled breath condensate (EBC; = 50) and sputum ( = 30) from 30 adults. Total median ∑OPEs concentrations in inhaled air were 4.

View Article and Find Full Text PDF

4-Octyl Itaconate ameliorates diesel exhaust particle-induced oxidative stress in nasal epithelial cells.

Front Immunol

September 2025

Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.

Background And Objective: Particulate matters such as diesel exhaust particles induce oxidative stress in cells and thereby have a negative impact on health. The aim of this study was to test whether the membrane-permeable, anti-inflammatory metabolite 4-Octyl Itaconate can counteract the oxidative stress induced by diesel exhaust particles and to analyze the downstream-regulated pathways both in human nasal epithelial cells and PBMCs.

Methods: Human nasal epithelial cells were cultured from nasal swabs, and the response of the cells to diesel exhaust particles either alone or in combination with 4-Octyl Itaconatee was investigated using RNA sequencing, qPCR, and cytokine measurement.

View Article and Find Full Text PDF

Introduction: Meteorological factors and air pollutants are two important factors affecting hospitalisation for coronary heart disease. This study aims to investigate the effects of meteorological factors and air pollutants on the risk of coronary heart disease hospitalisation and their interactions in rural areas with heavy particulate matter pollution at the edge of the desert in southern Xinjiang.

Methods: In this study, patients with coronary heart disease who were hospitalized in Tangyi Town, Tumushuke City, Xinjiang Province, were selected as the study subjects, and the lagged effects of meteorological factors and air pollutants on the risk of coronary heart disease hospitalisation and their interactions were analysed by combining the distributional lag nonlinear model and the quasi-Poisson regression model.

View Article and Find Full Text PDF