98%
921
2 minutes
20
Rapid growth of mobile and even wearable electronics is in pursuit of high-energy-density lithium-ion batteries. One simple and facile way to achieve this goal is the elimination of nonelectroactive components of electrodes such as binders and conductive agents. Here, we present a new concept of monocomponent electrodes comprising solely electroactive materials that are wrapped with an insignificant amount (less than 0.4 wt %) of conducting polymer (PEDOT:PSS or poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate)). The PEDOT:PSS as an ultraskinny surface layer on electroactive materials (LiCoO2 (LCO) powders are chosen as a model system to explore feasibility of this new concept) successfully acts as a kind of binder as well as mixed (both electrically and ionically) conductive film, playing a key role in enabling the monocomponent electrode. The electric conductivity of the monocomponent LCO cathode is controlled by simply varying the PSS content and also the structural conformation (benzoid-favoring coil structure and quinoid-favoring linear or extended coil structure) of PEDOT in the PEDOT:PSS skin. Notably, a substantial increase in the mass-loading density of the LCO cathode is realized with the PEDOT:PSS skin without sacrificing electronic/ionic transport pathways. We envisage that the PEDOT:PSS-skinned electrode strategy opens a scalable and versatile route for making practically meaningful binder-/conductive agent-free (monocomponent) electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am502736m | DOI Listing |
Biomater Adv
September 2025
Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.
Tailoring surface characteristics is key to guiding scaffold interaction with the biological environment, promoting successful biointegration while minimizing immune responses and inflammation. In cardiac tissue engineering, polyvinylidene fluoride (PVDF) is a material of choice for its intrinsic piezoelectric properties, which can be enhanced through electrospinning, also enabling the fabrication of nanofibrous structures mimicking native tissue. However, the inherent hydrophobicity of PVDF can hinder its integration with biological tissues.
View Article and Find Full Text PDFNano Lett
September 2025
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.
Developing highly active and stable nonprecious electrocatalysts toward sluggish alkaline oxygen evolution reaction (OER) is essential for large-scale green hydrogen production via electrochemical water splitting. Here we report phase and surface co-reconstruction of S-doped (NiCo)WC nanoparticles into (NiCo)C with amorphous electroactive NiCoOOH layer for highly efficient alkaline OER by W dissolution and NiCo surface oxidation. The W dissolution results in the formation of Brønsted base WO ions, which electrostatically accumulate around electrode to promote water dissociation into abundant OH* intermediates, in situ constructing a locally strong alkaline microenvironment to facilitate OH* adsorption on NiCoOOH sites and trigger lattice-oxygen oxidation path.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Centre for Advanced Materials and Innovative Technologies, Vellore Institute of Technology, Chennai 600127, India.
Metal-organic frameworks (MOFs) are remarkable electroactive materials for energy storage and electrochemical CO reduction (CORR) due to their high surface area and tunable pore structures. However, challenges such as stability, conductivity, and product selectivity at high current densities must be addressed to realize their full potential. We crossbreed a zeolite imidazolate framework-8 (ZIF-8)-based MOF with MXene using a simple layer-by-layer deposition technique and investigate the supercapacitive and CORR performances.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, P. R. China.
Aqueous batteries have garnered significant attention as compelling contenders for large-scale energy storage owing to their inherent safety, cost-effectiveness, and environmental sustainability. Significant endeavors have been dedicated to develop redox-active organic cathode materials, which is considered a crucial factor driving the development of aqueous batteries. Among various cathodes, carbonyl-rich organic compounds demonstrate exceptional potential in view of their strong electroactivity, ion-coupling sensitivity and structural versatility.
View Article and Find Full Text PDFNanoscale
September 2025
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
Layered double hydroxides (LDHs) are extensively used as electroactive materials for supercapacitors. However, they exhibit insufficient conductivity, low energy density and poor rate capability. To address the above issues, NiCr-LDH nanosheets supported on exfoliated nano-graphite flakes are used to fabricate flower-like NiCr-LDH/graphite nanocomposites by a simple one-step CGDE strategy.
View Article and Find Full Text PDF