Screening of protein-protein and protein-DNA interactions using microarrays: applications in biomedicine.

Adv Protein Chem Struct Biol

Centro Nacional de Biotecnología, Spanish National Research Council (CSIC), Madrid, Spain.

Published: April 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this report, we focus on two different array-based technologies that enable large-scale screening of protein interactions. First, protein arrays focus on the identification of protein-protein interactions (PPIs). Second, DNA arrays have also evolved to explore the identification of protein-DNA interactions (PDIs), offering novel tools to control key biological processes. Such a tool is termed protein-binding DNA arrays (also protein-DNA arrays or protein-binding microarrays). These two array-based technologies share unrivaled screening capabilities and constitute valid approaches to address biological questions at the molecular level and, eventually, may be used in biomedical applications. Outstanding achievements of these technologies and their eventual application in biomedicine are discussed here, including the identification and characterization of biomarkers, screening of PPIs, detection of protein posttranslational modifications and biofluid profiling. Advantages and limitations of protein arrays, protein-binding arrays, and other proteomic technologies are also discussed here. Finally, we built a list of dedicated databases and on-line resources comprising updated information on human PPIs and PDIs that can serve as a toolbox for researchers in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-800453-1.00008-7DOI Listing

Publication Analysis

Top Keywords

protein-dna interactions
8
array-based technologies
8
protein arrays
8
dna arrays
8
arrays protein-binding
8
arrays
6
screening
4
screening protein-protein
4
protein-protein protein-dna
4
interactions
4

Similar Publications

The exocyst complex is a heterooctameric protein complex, the individual components of the complex are thought to act on specific biological processes. However, the role of Sec10, the central subunit of the complex, in host defense and viral replication remains unclear. Here, we reported that Sec10 significantly impairs the activation of JAK-STAT signal pathway of type I IFN (IFN-I) response against both DNA- and RNA-viruses, and promotes viral replication, respectively.

View Article and Find Full Text PDF

DNA replication requires recruitment of Cdc45 and GINS into the MCM double hexamer by initiation factors to form an active helicase, the Cdc45-MCM-GINS (CMG) complex, at the replication origins. The initiation factor Sld3 is a central regulator of Cdc45 and GINS recruitment, working with Sld7 together. However, the mechanism through which Sld3 regulates CMG complex formation remains unclear.

View Article and Find Full Text PDF

Unlabelled: Human adenoviruses (HAdVs) induce significant reorganization of the nuclear environment, leading to the formation of virus-induced subnuclear structures known as replication compartments (RCs). Within these RCs, viral genome replication, gene expression, and modulation of cellular antiviral responses are tightly coordinated, making them valuable models for studying virus-host interactions. In a recent study, we analyzed the protein composition of HAdV type 5 (HAdV-C5) RCs isolated from infected primary cells at different time points during infection using quantitative proteomics.

View Article and Find Full Text PDF

Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.

Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.

View Article and Find Full Text PDF

Emerging evidence highlights the potential of bioactive compounds, particularly polyphenols, as adjunctive therapeutic agents in the treatment of pancreatic cancer (PC), one of the most aggressive malignancies. This review focuses on epigallocatechin gallate (EGCG) and resveratrol due to their extensively documented anticancer activity, favorable safety profiles, and their unique ability to modulate multiple signaling pathways relevant to pancreatic tumorigenesis. Among polyphenols, these two have shown superior anti-cancer activity, epigenetic regulatory effects, and synergy with standard chemotherapies in preclinical pancreatic cancer models.

View Article and Find Full Text PDF