Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential.

Download full-text PDF

Source

Publication Analysis

Top Keywords

forest ecosystems
20
ecosystems ningxia
16
ningxia region
16
carbon density
16
carbon storage
16
forest
13
carbon
10
sequestration status
8
status forest
8
ningxia hui
8

Similar Publications

Multiyear Drought Strengthens Positive and Negative Functional Diversity Effects on Tree Growth Response.

Glob Chang Biol

September 2025

Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.

Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.

View Article and Find Full Text PDF

De novo assembled nuclear, chloroplast and mitochondrial genomes show high intraspecific variation in the tropical rainforest species Symphonia globulifera.

G3 (Bethesda)

September 2025

INRAE, UR629 URFM, Ecologie des Forêts Méditerranéennes, Site Agroparc, Domaine Saint Paul, F-84914 Avignon Cedex 9, France.

Symphonia globulifera (Clusiaceae) has emerged as a model organism in tropical forest ecology and evolution due to its significant ecological role and complex biogeographical history. Originating from Africa, this species has independently colonized Caribbean, Central and South America three times, becoming a key component of tropical ecosystems across these regions. Despite the ecological importance of S.

View Article and Find Full Text PDF

The Balkan Peninsula is a European biodiversity hotspot, home to 6,500 native vascular plant species, many of which are endemic. The region has diverse range of climates and complex topography, creating conditions that suit many woody ornamental, fruit, and forest species. Nevertheless, climate change, habitat destruction, invasive species, plant diseases, and agricultural practices threaten natural ecosystems and cultivated species.

View Article and Find Full Text PDF

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

Animal migration remains poorly understood for many organisms, impeding understanding of movement dynamics and limiting conservation actions. We develop a framework that scales from movements of individuals to the dynamics of continental migration using data synthesis of endogenous markers, which we apply to three North American bat species with unexplained high rates of fatalities at wind energy facilities. The two species experiencing the highest fatality rates exhibit a "pell-mell" migration strategy in which individuals move from summer habitats in multiple directions, both to higher and lower latitudes, during autumn.

View Article and Find Full Text PDF