Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Performing far-field microscope polarization spectroscopy and finite element method simulations, we investigated experimentally and theoretically the surface plasmon modes in single Ag nanowire antennas. Our results show that the surface plasmon resonances in the single Ag nanowire antenna can be tuned from the dipole plasmon mode to a higher order plasmon mode, which would result in the emission with different intensities and polarization states, for the semiconductor quantum dots coupled to the nanowire antenna. The fluorescence polarization is changed with different polarized excitation of the 800 nm light beam, while it remains parallel to the Ag nanowire axis at the 400 nm excitation. The 800 nm incident light interacts nonresonantly with the dipole plasmon mode with the polarized excitation parallel to the Ag nanowire axis, while it excites a higher order plasmon mode with the perpendicular excitation. Under excitation of 400 nm, either the parallel or perpendicular excitation can only result in a dipole plasmon mode. In addition, we demonstrate that the single Ag nanowire antenna can work as an energy concentrator for enhancing the two-photon excited fluorescence of semiconductor quantum dots.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr01497aDOI Listing

Publication Analysis

Top Keywords

plasmon mode
20
single nanowire
12
nanowire antenna
12
dipole plasmon
12
plasmon modes
8
modes single
8
far-field microscope
8
microscope polarization
8
polarization spectroscopy
8
surface plasmon
8

Similar Publications

Molecular Plasmonic Cavities.

Nano Lett

September 2025

Department of Physics, Columbia University, New York, New York 10027, United States.

Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.

View Article and Find Full Text PDF

Coherent Dynamics of Molecular Vibrations in Single Plasmonic Nanogaps.

Phys Rev Lett

August 2025

Cavendish Laboratory, NanoPhotonics Centre, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0US, United Kingdom.

Coupling with a resonant optical cavity is well known to modify the coherence of molecular vibrations. However, in the case of molecules coupled to a plasmonic nanocavity mode, the local mechanisms of vibrational coherence decay remain unclear. Here, the dynamics of a few hundred molecules of nitrothiophenol (NTP) within a single plasmonic nanocavity are studied by sum-frequency generation.

View Article and Find Full Text PDF

The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown CuO/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates.

View Article and Find Full Text PDF

Geometric Sensitivity of Mode Hybridization in Symmetric and Asymmetric Nanoscale Dimers.

IEEE Nanotechnol Mater Devices Conf

October 2024

PacTech USA Inc., Santa Clara, CA 95050 USA.

Nanoparticles exhibit optical and infrared sensitivity useful in optoelectronics, spectroscopy, and sensing. Capacitative and conductive coupling induces dipolar and charge transfer plasmon modes in nanoscale dimers. Optical and infrared activity of these hybridized modes are exquisitely sensitive to geometric features of the nanoscale dimer.

View Article and Find Full Text PDF

Colloidal gold technology in viral diagnostics: Recent innovations, clinical applications, and future perspectives.

Virology

September 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:

Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.

View Article and Find Full Text PDF