98%
921
2 minutes
20
Surface-addressable nanostructures of linearly π-conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid-phase "click" chemistry approach for the synthesis of a series of DNA-chromophore hybrid amphiphiles and report their reversible self-assembly into surface-engineered vesicles with enhanced emission. DNA-directed surface addressability of the vesicles was demonstrated through the integration of gold nanoparticles onto the surface of the vesicles by sequence-specific DNA hybridization. This system could be converted to a supramolecular light-harvesting antenna by integrating suitable FRET acceptors onto the surface of the nanostructures. The general nature of the synthesis, surface addressability, and biocompatibility of the resulting nanostructures offer great promises for nanoelectronics, energy, and biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201403455 | DOI Listing |
ACS Appl Bio Mater
September 2025
Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies (IMEM-BRT) Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Building I, second floor, Barcelona 08019, Spain.
A drug delivery platform based on highly porous poly(lactic acid) (PLA) microparticles functionalized with amphiphilic poly(ethylene glycol)-cholesterol (PEG-Chol) has been developed and successfully validated . This hybrid system addresses key limitations of conventional PLA and poly(lactide--glycolide) (PLGA) nanoparticles, providing better encapsulation and sustained drug release. The incorporation of PEG-Chol provides both enhanced aqueous dispersibility for prolonged circulation and membrane-anchoring capabilities, thereby promoting cellular interaction and endocytosis.
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India. Electronic address:
Fluorescence biomarkers are crucial for understanding structure and dynamics of biological macromolecules. However, limitations in binding affinity and fluorescence response remain challenging for many existing markers. In this study, we synthesized a carbazole-rhodanine hybrid molecule (CrRh) and evaluated its potential as a fluorescent biomarker, focusing on its binding affinity and fluorescence behaviour upon interaction with serum proteins (bovine serum albumin (BSA) and human serum albumin (HSA)).
View Article and Find Full Text PDFJ Funct Biomater
August 2025
Department of Pharmacology, Pharmacy and Pharmaceutical Technology, CiMUS Research Centre, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure-featuring an inorganic backbone and highly tunable organic side chains-confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide spectrum of functional properties, including the formation of multifunctional nanostructures tailored for specific therapeutic needs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2025
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
Viruses are versatile colloidal materials in their biofunctions, monodispersed and periodic structures, and high surface designability. For expanding the applicability of virus-based materials, spatiotemporally controlled immobilization and dispersion of viruses with retained activity should be useful, though control of the dynamic nature of viruses hybridized with commonly used polymers has been difficult due to their strong interactions. Here, we report a self-assembling peptide (A2Az) enabling photo control of adhesion and dispersion of M13 bacteriophage virus (M13 phage) and successfully demonstrate patterning of localization and infection of the virus.
View Article and Find Full Text PDFChemistryOpen
August 2025
CPCV, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
Pseudo-rotaxanes are reversibly interlocked molecules with at least one linear molecule threaded into a macrocycle and, contrary to rotaxanes, an advantageous ability to be dissociated. Cyclodextrins constitute attracting macrocyclic host entities to build such dynamic structures for their oligosaccharide nature, conic shape, amphiphilic character and biocompatibility. Here we show that using an azobenzene DNA intercalator as a guest allows to build a pseudo-rotaxane combining several remarkable properties, including light-controlled assembly/disassembly, photoreversible chirality and fluorescence, as well as the capability to affect the melting temperature of double-stranded DNA through intercalator host-guest complexation.
View Article and Find Full Text PDF