98%
921
2 minutes
20
Background: Thyroid hormones are essential for the maturation and functions of the central nervous system. Pain sensitivity is related to the thyroid status. However, information on how thyroid hormones affect pain processing and synaptic transmission in the anterior cingulate cortex (ACC) is limited. Nociceptive threshold and synaptic transmission in the ACC were detected in the experimental hypothyroidism (HT) mice.
Results: HT was induced by methimazole and potassium perchlorate in distilled drinking water for 4 weeks. The threshold of pain perception to hot insults, but not mechanical ones, decreased in hypothyroid mice. After treatment with tri-iodothyronine (T3) or thyroxine (T4) for 2 weeks, thermal pain threshold recovered. Electrophysiological recordings revealed enhanced glutamatergic synaptic transmission and reduced GABAergic synaptic transmission in the ACC. Supplementation with T3 or T4 significantly rescued this synaptic transmission imbalance. In the same model, HT caused the up-regulation of the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and NR2B-containing N-methyl-D-aspartate receptors, but it down-regulated γ-aminobutyric acid A receptors in the ACC. Supplementation with T3 or T4 notably recovered the levels of above proteins.
Conclusions: These results suggest that HT promotes hypersensitivity to noxious thermal, and that supplementation with T3 or T4 rescues the imbalance between excitatory and inhibitory transmission in the ACC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072477 | PMC |
http://dx.doi.org/10.1186/1744-8069-10-38 | DOI Listing |
Commun Biol
September 2025
Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).
View Article and Find Full Text PDFNat Commun
September 2025
Department of Physiology, University of Bern, Bern, Switzerland.
Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information. Augmenting SNNs with trainable transmission delays, alongside synaptic weights, has recently shown to increase their accuracy and parameter efficiency. However, existing training methods to optimize such networks rely on discrete time, approximate gradients, and full access to internal variables such as membrane potentials.
View Article and Find Full Text PDFNat Commun
September 2025
Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, Juelich, Germany.
Autism is a neurodevelopmental condition associated with altered resting-state brain function. An increased excitation-inhibition ratio is discussed as a pathomechanism but in-vivo evidence of disturbed neurotransmission underlying functional alterations remains scarce. We compare local resting-state brain activity and neurotransmitter co-localizations between autism (N = 405, N = 395) and neurotypical controls (N = 473, N = 474) in two independent cohorts and correlate them with excitation-inhibition changes induced by glutamatergic (ketamine) and GABAergic (midazolam) medication.
View Article and Find Full Text PDFJ Neurosci
September 2025
Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, United States.
Presenilin mutations are the most common cause of familial Alzheimer's disease (FAD), but the mechanisms by which they disrupt neuronal function remain unresolved, particularly in relation to γ-secretase activity. Using , we show that the presenilin ortholog SEL-12 supports synaptic transmission and axonal integrity through a pathway involving the ryanodine receptor RYR-1. Loss-of-function mutations in either or reduce neurotransmitter release and cause neuronal structural defects, with no additional impairment in double mutants, suggesting a shared pathway.
View Article and Find Full Text PDFJ Neurophysiol
September 2025
Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA.
Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.
View Article and Find Full Text PDF