Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Raman spectroscopy is a powerful non-destructive technique for qualitatively and quantitatively characterizing materials. However, noise often obscures interesting Raman peaks due to the inherently weak Raman signal, especially in biological samples. In this study, we develop a method based on spectral reconstruction to recover Raman spectra with low signal-to-noise ratio (SNR). The synthesis of narrow-band measurements from low-SNR Raman spectra eliminates the effect of noise by integrating the Raman signal along the wavenumber dimension, which is followed by spectral reconstruction based on Wiener estimation to recover the Raman spectrum with high spectral resolution. Non-negative principal components based filters are used in the synthesis to ensure that most variance contained in the original Raman measurements are retained. A total of 25 agar phantoms and 20 bacteria samples were measured and data were used to validate our method. Four commonly used de-noising methods in Raman spectroscopy, i.e. Savitzky-Golay (SG) algorithm, finite impulse response (FIR) filtration, wavelet transform and factor analysis, were also evaluated on the same set of data in addition to the proposed method for comparison. The proposed method showed the superior accuracy in the recovery of Raman spectra from measurements with extremely low SNR, compared with the four commonly used de-noising methods.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.012102DOI Listing

Publication Analysis

Top Keywords

raman spectra
16
raman
10
recovery raman
8
spectra low
8
low signal-to-noise
8
signal-to-noise ratio
8
wiener estimation
8
raman spectroscopy
8
raman signal
8
spectral reconstruction
8

Similar Publications

Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used.

View Article and Find Full Text PDF

Rapid and sensitive acute leukemia classification and diagnosis platform using deep learning-assisted SERS detection.

Cell Rep Med

August 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Mole

Rapid identification and accurate diagnosis are critical for individuals with acute leukemia (AL). Here, we propose a combined deep learning and surface-enhanced Raman scattering (DL-SERS) classification strategy to achieve rapid and sensitive identification of AL with various subtypes and genetic abnormalities. More than 390 of cerebrospinal fluid (CSF) samples are collected as targets, encompassing healthy control, AL patients, and individuals with other diseases.

View Article and Find Full Text PDF

Statistical quantification of SERS signals in microfluidic flow using AuNP-bound polystyrene microparticles.

Anal Sci

September 2025

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.

Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.

View Article and Find Full Text PDF

Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.

View Article and Find Full Text PDF

May Two Enantiomers Have Different Raman Spectra?

Chirality

September 2025

Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy.

A recent publication by Kopec et al., "The effect of enantiomers of thalidomide on colon cells-Raman spectroscopy studies", reported to "demonstrate that Raman spectroscopy reveals distinct spectral differences between the enantiomers of thalidomide" and provided both experimental and computational evidence. However, the theory of Raman spectroscopy inherently establishes that two enantiomers must exhibit identical Raman frequencies and intensities.

View Article and Find Full Text PDF