Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction. We developed a proteomic technique called "quantitative temporal viromics" (QTV), which employs multiplexed tandem-mass-tag-based mass spectrometry. Human cytomegalovirus (HCMV) is not only an important pathogen but a paradigm of viral immune evasion. QTV detailed how HCMV orchestrates the expression of >8,000 cellular proteins, including 1,200 cell-surface proteins to manipulate signaling pathways and counterintrinsic, innate, and adaptive immune defenses. QTV predicted natural killer and T cell ligands, as well as 29 viral proteins present at the cell surface, potential therapeutic targets. Temporal profiles of >80% of HCMV canonical genes and 14 noncanonical HCMV open reading frames were defined. QTV is a powerful method that can yield important insights into viral infection and is applicable to any virus with a robust in vitro model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048463PMC
http://dx.doi.org/10.1016/j.cell.2014.04.028DOI Listing

Publication Analysis

Top Keywords

viral proteins
8
quantitative temporal
4
temporal viromics
4
viromics approach
4
approach investigate
4
investigate host-pathogen
4
host-pathogen interaction
4
interaction systematic
4
systematic quantitative
4
quantitative analysis
4

Similar Publications

Uncovering the evolving arms race between host immunity and HIV-1.

Trends Immunol

September 2025

Department of Life Science, University of Seoul, Seoul, Republic of Korea. Electronic address:

Despite an effective combination of antiretroviral therapy, HIV persists as a lifelong infection and global health threat. The human host equips restriction factors and interferon (IFN)-stimulated genes that target every step of the viral life cycle. However, HIV-1 has evolved a coordinated immune evasion strategy using a limited set of accessory proteins with distinct antagonistic functions.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) or their sub types, such as exosomes are valuable nano-biomolecules for immunotherapeutic, drug delivery, and diagnostic purposes. Freshwater and marine fish, including olive flounder (Paralichthys olivaceus), are highly susceptible to the contagious Viral hemorrhagic septicemia virus (VHSV). In this study, we aimed to determine how infection alters the biological responses by analyzing the proteomic profiles of plasma-derived exosomes from phosphate buffered saline (PBS) injected (PBS-Exo) and VHSV challenged (VHSV-Exo) olive flounders at the initial stages infection.

View Article and Find Full Text PDF

Evaluation of the C protein of BVDV as a vaccine candidate: Immunoprotective studies in mice.

Vet Microbiol

September 2025

College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, PR China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Techno

Bovine Viral Diarrhea Virus (BVDV) is a major pathogen associated with calf diarrhea and reproductive disorders in cattle. This study evaluated the immune-protective potential of a subunit vaccine based on the capsid C protein of the BVDV HNL-1 strain. In mice model, the C protein subunit vaccine exhibits a favorable safety and elicits robust immune-protective efficacy comparable to commercial inactivated vaccines.

View Article and Find Full Text PDF

Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by the novel phlebovirus SFTSV (SFTS bunyavirus), was first identified in 2009 across several Chinese provinces, with a case fatality rate reaching 30 %. Given its compact genome, SFTSV critically depends on host cellular machinery for replication and pathogenesis. In this study, we employed a systematic strategy combining co-immunoprecipitation of viral-host complexes with formaldehyde crosslinking and affinity purification-mass spectrometry (AP-MS) to comprehensively map SFTSV-host interactions.

View Article and Find Full Text PDF

Influenza A viruses remain a global health threat, yet no universal antibody therapy exists. Clinical programs have centered on neutralizing mAbs, only to be thwarted by strain specificity and rapid viral escape. We instead engineered three non-neutralizing IgG2a mAbs that target distinct, overlapping epitopes within the conserved N terminus of the M2 ectodomain (M2e).

View Article and Find Full Text PDF