Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contrast-enhanced intravascular ultrasound imaging is a promising tool for the characterization of coronary vasa vasorum proliferation, which has been identified as a marker of, and possible etiologic factor in, the development of high-risk atherosclerotic plaques. Resonance-based nonlinear detection methods have required the development of prototype catheters which are not commercially available, thus limiting clinical translation. In this study, we investigated the performances of a radial modulation imaging approach (25/3 MHz combination) using simulations, implemented it on a clinical 20-MHz rotating catheter, and tested it in a wall-less tissue-mimicking flow phantom perfused with lipid-encapsulated microbubbles (MBs). The effects of the phase lag, low-frequency pressure, and MB concentration on the envelope subtracted radial modulation signals were investigated as a function of depth. Our dual-pulse dual-frequency approach produced contrast- specific images with contrast-to-tissue improvements over B-mode of 15.1 ± 2.1 dB at 2 mm and 6.8 ± 0.1 dB at 4 mm depths. Using this imaging strategy, 200-μm-diameter cellulose tubing perfused with MBs could be resolved while surrounding tissue scattering was suppressed. These results raise promise for the detection of coronary vasa vasorum and may ultimately facilitate the detection of plaque at risk for rupture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094374PMC
http://dx.doi.org/10.1109/TUFFC.2014.6805692DOI Listing

Publication Analysis

Top Keywords

radial modulation
12
intravascular ultrasound
8
coronary vasa
8
vasa vasorum
8
modulation contrast
4
imaging
4
contrast imaging
4
imaging 20-mhz
4
20-mhz single-element
4
single-element intravascular
4

Similar Publications

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

We present a high-throughput method using standard laboratory equipment and microfluidics to produce cellular force microscopy probes with controlled size and elastic modulus. Mechanical forces play crucial roles in cell biology but quantifying these forces in physiologically relevant systems remains challenging due to the complexity of the native cell environment. Polymerized hydrogel microspheres offer great promise for interrogating the mechanics of processes inaccessible to classic force microscopy methods.

View Article and Find Full Text PDF

Background: The poor soft tissue resolution of four-dimensional computed tomography (4D-CT) limits its utility in delineating liver cancer target volumes.

Purpose: To compare the consistency between four-dimensional magnetic resonance imaging (4D-MRI) using T1-weighted (T1w) radial stack-of-stars (SOS) gradient echo (GRE) sequences and 4D-CT in assessing tumor motion and morphology, for defining internal target volume in liver tumor radiotherapy.

Materials And Methods: Position and geometric accuracy and the impact of baseline drift between 4D-MRI (using T1w radial SOS GRE sequence) and 4D-CT were evaluated using a motion phantom.

View Article and Find Full Text PDF

Chiral vortex beams with tunable topological charges (TCs) hold promise for high-capacity and multi-channel information transmission. However, asymmetric vortex transport, a crucial feature for enhancing robustness and security, often disrupts channel independence by altering TCs, causing signal distortion. Here, we exploit the radial mode degree of freedom in chiral space to achieve extremely asymmetric transmission with high energy contrast, while preserving chirality and TCs.

View Article and Find Full Text PDF

Navigating Brain Organoid Maturation: From Benchmarking Frameworks to Multimodal Bioengineering Strategies.

Biomolecules

August 2025

Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore.

Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes-such as the expansion of outer radial glia and neuromelanin-that are absent in rodent models, making them indispensable for studying human brain evolution and dysfunction. However, a major bottleneck persists: Extended culture periods (≥6 months) are empirically required to achieve late-stage maturation markers like synaptic refinement, functional network plasticity, and gliogenesis.

View Article and Find Full Text PDF