98%
921
2 minutes
20
Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pbi.12193 | DOI Listing |
PLoS One
September 2025
Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye.
Cytochrome P450 enzymes (P450s), particularly those of microbial origin, are highly versatile biocatalysts capable of catalyzing a broad range of regio- and stere-oselective reactions. P450s derived from extremophiles are of particular interest due to their potential tolerance to high temperature, salinity, and acidity. This study aimed to identify and classify novel microbial P450 enzymes from extreme environments across Türkiye, including hydrothermal springs, hypersaline lakes, and an acid-mine drainage site.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFMar Biotechnol (NY)
September 2025
Department of Marine Life Science, Jeju National University, Jeju, 63243, South Korea.
This study assessed the optimum dietary vitamin B requirement of Pacific white shrimp, Penaeus vannamei, for growth, feed efficiency, hemocyte counts, innate immunity, and ammonia stress resistance. Semi-purified experimental diets were prepared by adding vitamin B at 0.0, 0.
View Article and Find Full Text PDFPlant Mol Biol
September 2025
Institute of Biological Chemistry, The Washington State University, Pullman, WA, 99164, USA.
Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.
View Article and Find Full Text PDFAquac Nutr
August 2025
Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran.
A 60-day research was conducted to evaluate the influence of dietary fish oil (FO) and selenium nanoparticles (SeNPs) on performance of juveniles (2.4 ± 0.0 g) reared in seawater (SW) or hypersaline (HS) water conditions.
View Article and Find Full Text PDF