In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development.
View Article and Find Full Text PDFClimate change is considered a serious threat to agriculture and food security. It is linked to rising temperatures and water shortages, conditions that are expected to worsen in the coming decades. Consequently, the introduction of more drought-tolerant crops is required.
View Article and Find Full Text PDFFront Plant Sci
May 2021
Willd (quinoa) has acquired an increased agronomical and nutritional relevance due to the capacity of adaptation to different environments and the exceptional nutritional properties of their seeds. These include high mineral and protein contents, a balanced amino acid composition, an elevated antioxidant capacity related to the high phenol content, and the absence of gluten. Although it is known that these properties can be determined by the environment, limited efforts have been made to determine the exact changes occurring at a nutritional level under changing environmental conditions in this crop.
View Article and Find Full Text PDFCell wall modification is integral to many plant developmental processes where cells need to separate, such as abscission. However, changes in cell wall composition during natural fruit abscission are poorly understood. In olive (Olea europaea L.
View Article and Find Full Text PDFArabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis.
View Article and Find Full Text PDFA screening under salt stress conditions of a T-DNA mutant collection of tomato (Solanum lycopersicum L.) led to the identification of the altered response to salt stress 1 (ars1) mutant, which showed a salt-sensitive phenotype. Genetic analysis of the ars1 mutation revealed that a single T-DNA insertion in the ARS1 gene was responsible of the mutant phenotype.
View Article and Find Full Text PDFJ Plant Physiol
September 2015
Nowadays, irrigation with low quality water is becoming an alternative to satisfy the needs of crops. However, some plant species have to deal with high salinity of reclaimed water, by adapting their physiological behaviour during both saline and recovery periods and developing morphological changes in their leaves. The application of arbuscular mycorrhizal fungi (AMF) could also be a suitable option to mitigate the negative effects of this kind of water, although the effectiveness of plant-AMF association is influenced by many factors.
View Article and Find Full Text PDFPhysiological and biochemical changes in Myrtus communis L. plants after being subjected to different solutions of NaCl (44, and 88 mM) for up to 30 days (Phase I) and after recovery from the salinity period (Phase II) were studied. Myrtle plants showed salinity tolerance by displaying a series of adaptative mechanisms to cope with salt-stress, including controlled ion homeostasis, the increase in root/shoot ratio, the reduction of water potentials and stomatal conductance to limit water loss.
View Article and Find Full Text PDFWe studied the response of Eugenia myrtifolia L. plants, an ornamental shrub native to tropical and subtropical areas, to salt stress in order to facilitate the use of these plants in Mediterranean areas for landscaping. E.
View Article and Find Full Text PDFJasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress.
View Article and Find Full Text PDFIn this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques.
View Article and Find Full Text PDFPlant Biotechnol J
September 2014
Succulence and leaf thickness are important anatomical traits in CAM plants, resulting from the presence of large vacuoles to store organic acids accumulated overnight. A higher degree of succulence can result in a reduction in intercellular air space which constrains internal conductance to CO2. Thus, succulence presents a trade-off between the optimal anatomy for CAM and the internal structure ideal for direct C3 photosynthesis.
View Article and Find Full Text PDFAdaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate conditions and expose them to control (0mM NaCl), and two levels of salinity; medium (75mM NaCl) and high (150mM NaCl).
View Article and Find Full Text PDFThe rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation.
View Article and Find Full Text PDFLegume nodule senescence is a poorly understood process involving a decrease in N(2) fixation and an increase in proteolytic activity. Some physiological changes during nodule aging have been reported, but scarce information is available at the subcellular level. Biochemical, immunological and proteomic approaches were used to provide insight into the effects of aging on the mitochondria and cytosol of nodule host cells.
View Article and Find Full Text PDFSharka, a disease caused by plum pox virus (PPV), has a significant economic impact on fruit tree production. In this work, we analysed the effect of (2,1,3)-benzothiadiazole (BTH) and L-2-oxo-4-thiazolidine-carboxylic acid (OTC) on plant growth and virus content. OTC reduced sharka symptom, stimulated plant growth and alleviated PPV-induced oxidative stress, indicated by a lack of changes in some oxidative stress parameters.
View Article and Find Full Text PDFIn order to advance in the understanding of CI in pepper fruits, the cell ultrastructure alterations induced by CI and the physiological and metabolic changes have been studied along with the proteomic study. When stored at low temperatures bell pepper (Capsicum annuum) fruits exhibited visual CI symptoms and important alterations within the cell ultrastructure, since peroxisomes and starch grains were not detected and the structure of the chloroplast was seriously damaged in chilled tissues. Physiological and metabolic disorders were also observed in chilled fruits, such as higher ethylene production, increased MDA content, changes in sugar and organic acids and enzymatic activities.
View Article and Find Full Text PDFGibberellin (GA) biosynthesis is necessary for normal plant development, with later GA biosynthetic stages being governed by multigene families. Arabidopsis thaliana contains five GA 20-oxidase (GA20ox) genes, and past work has demonstrated the importance of GA20ox1 and -2 for growth and fertility. Here, we show through systematic mutant analysis that GA20ox1, -2, and -3 are the dominant paralogs; their absence results in severe dwarfism and almost complete loss of fertility.
View Article and Find Full Text PDFPolyamines (PAs) are required for cell growth and cell division in eukaryotic and prokaryotic organisms. The present study is aimed at understanding the developmental regulation of PA biosynthesis and catabolism during flower opening and early fruit development in relation to fruit size and shape. Two full-length cDNA clones coding for S-adenosyl methionine decarboxylase (SAMDC) and spermidine synthase (SPDS) homologs, key steps in the PA biosynthesis pathway, in the stone-fruit of olive (Olea europaea L.
View Article and Find Full Text PDFSalinity affects normal growth and development of plants depending on their capacity to overcome the induced stress. The present study was focused on the response and regulation of the antioxidant defence system in Brassica oleracea roots under short and long salt treatments. The function and the implications of hydrogen peroxide as a stressor or as a signalling molecule were also studied.
View Article and Find Full Text PDFThe refining process in the petrochemical industry generates oil refinery sludges, a potentially contaminating waste product, with a high content of hydrocarbons and heavy metals. Faster degradation of hydrocarbons has been reported in vegetated soils than in non-vegetated soils, but the impact of these contaminants on the plants physiology and on their antioxidant system is not well known. In this study, the effect of the addition of petroleum sludge to soil on the physiological parameters, nutrient contents, and oxidative and antioxidant status in alfalfa was investigated.
View Article and Find Full Text PDFGlutathione and ascorbate are considered the major redox buffers in plant cells. They are implicated in many reactions at the sub-cellular level. However, information about the location and quantification of glutathione in the different sub-cellular compartments is very scarce and it has been obtained mainly using organelle purification and chemical quantification.
View Article and Find Full Text PDFThe activity of the gibberellin (GA) biosynthetic enzymes GA 20-oxidases (GA20ox) is of particular importance in determining GA concentration in many plant species. In Arabidopsis these enzymes are encoded by a family of five genes: AtGA20ox1-AtGA20ox5. Transcript analysis indicated that they have different expression patterns and may thus participate differentially in GA-regulated developmental processes.
View Article and Find Full Text PDFHyperhydricity is considered as a physiological disorder that can be induced by different stressing conditions. In the present work we have studied the metabolic and energetic states of hyperhydric carnation shoots. We have evaluated the hypothesis that hypoxia stress is the main factor affecting the metabolism of hyperhydric leaves.
View Article and Find Full Text PDF