A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A protein structural classes prediction method based on PSI-BLAST profile. | LitMetric

A protein structural classes prediction method based on PSI-BLAST profile.

J Theor Biol

College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China. Electronic address:

Published: July 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Knowledge of protein structural classes plays an important role in understanding protein folding patterns. Prediction of protein structural class based solely on sequence data remains to be a challenging problem. In this study, we extract the long-range correlation information and linear correlation information from position-specific score matrix (PSSM). A total of 3600 features are extracted, then, 278 features are selected by a filter feature selection method based on 1189 dataset. To verify the performance of our method (named by LCC-PSSM), jackknife tests are performed on three widely used low similarity benchmark datasets. Comparison of our results with the existing methods shows that our method provides the favorable performance for protein structural class prediction. Stand-alone version of the proposed method (LCC-PSSM) is written in MATLAB language and it can be downloaded from http://bioinfo.zstu.edu.cn/LCC-PSSM/.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2014.02.034DOI Listing

Publication Analysis

Top Keywords

protein structural
16
structural classes
8
method based
8
structural class
8
protein
5
method
5
classes prediction
4
prediction method
4
based psi-blast
4
psi-blast profile
4

Similar Publications