98%
921
2 minutes
20
While the immune microenvironment has been investigated in breast cancers, little is known about its role in non-malignant breast tissues. Here we quantify and localize cellular immune components in normal breast tissue lobules, with and without visible immune infiltrates (lobulitis). Up to ten representative lobules each in eleven normal breast tissue samples were assessed for B cells (CD20), cytotoxic T cells (CD8), helper T cells (CD4), dendritic cells (CD11c), leukocytes (CD45), and monocytes/macrophages (CD68). Using digital image analysis, immune cell densities were measured and compared between lobules with/without lobulitis. 109 lobules in 11 normal breast tissue samples were evaluated; 31 with lobulitis and 78 without. Immune cells showed consistent patterns in all normal samples, predominantly localized to lobules rather than stroma. Regardless of lobulitis status, most lobules demonstrated CD8+, CD11c+, CD45+, and CD68+ cells, with lower densities of CD4+ and CD20+ cells. Both CD11c+ and CD8+ cells were consistently and intimately associated with the basal aspect of lobule epithelium. Significantly higher densities of CD4+, CD8+, CD20+, and CD45+ cells were observed in lobules with lobulitis. In contrast, densities of monocytes/macrophages and dendritic cells did not vary with lobulitis. In normal breast tissue, myeloid and lymphoid cells are present and localized to lobules, with cytotoxic T and dendritic cells directly integrated with epithelium. Lobules with lobulitis have significantly more adaptive immune (B and T) cells, but no increase in dendritic cells or monocytes/macrophages. These findings indicate an active and dynamic mucosal immune system in normal breast tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962744 | PMC |
http://dx.doi.org/10.1007/s10549-014-2896-8 | DOI Listing |
J Hum Genet
September 2025
Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
September 2025
The Department of Radiology, Wakayama Medical University, Wakayama, Japan.
Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.
View Article and Find Full Text PDFExp Cell Res
September 2025
Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Sciences, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India. Electronic address:
CD151 is a tetraspanin, abnormally expressed in triple negative breast cancer (TNBC). It is a prominent component of exosomes, facilitating the secretion of proteins that promote metastasis and drug resistance. We have previously demonstrated that silencing the CD151 gene reduces metastasis in TNBC.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Polyploidy, a conserved mechanism involved in normal development and tissue homeostasis, plays a paradoxical role in cancer by facilitating both tumor progression and therapeutic vulnerability. Although polyploidization may confer survival advantages to cancer cells, its controlled induction could represent an effective anticancer strategy. Aurora B kinase, a critical regulator of mitosis, plays a pivotal role in ensuring chromosomal integrity and preventing polyploidy.
View Article and Find Full Text PDFEur J Med Chem
August 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, Anhui, PR China. Electronic address:
Cancer remains a leading global cause of mortality, with treatment efficacy often compromised by drug resistance, highlighting the urgent need for novel targeted therapies. The enzyme fructose-2,6-bisphosphatase 4 (PFKFB4) governs glycolytic flux by modulating fructose-2,6-bisphosphate (F2,6BP) levels. PFKFB4 overexpression has been observed in various cancers and correlates with tumor growth, aggressiveness, and poor prognosis.
View Article and Find Full Text PDF