Amniotic fluid stem cells and their application in cell-based tissue regeneration.

Int J Fertil Steril

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

Published: October 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advances in stem cell biotechnology hold great promise in the field of tissue engineering and regenerative medicine. Of interest are marrow mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). In addition, amniotic fluid stem cells (AFSCs) have attracted attention as a viable choice following the search for an alternative stem cell source. Investigators are interested in these cells because they come from the amniotic fluid that is routinely discarded after birth. There have been multiple investigations conducted worldwide in an attempt to better understand AF-SCs in terms of their potential use in regenerative medicine. In this review we give a brief introduction of amniotic fluid followed by a description of the cells present within this fluid. Their history related to stem cell discovery in the amniotic fluid as well as the main characteristics of AF-SCs are discussed. Finally, we elaborate on the potential for these cells to promote regeneration of various tissue defects, including fetal tissue, the nervous system, heart, lungs, kidneys, bones, and cartilage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850304PMC

Publication Analysis

Top Keywords

amniotic fluid
20
stem cells
20
stem cell
12
stem
8
fluid stem
8
cells
8
regenerative medicine
8
amniotic
5
fluid
5
cells application
4

Similar Publications

Objective: The aim of this study was to determine the diagnostic value of prenatal chromosomal microarray analysis (CMA) for fetuses at high risk for various conditions on chromosomal abnormalities.

Methods: In the study, 8,560 clinical samples were collected from pregnant women between February 2018 and June 2022, including 75 villus, 7,642 amniotic fluid, and 843 umbilical cord blood samples. All samples were screening for chromosomal abnormalities using both CMA and karyotyping.

View Article and Find Full Text PDF

Objectives: Recommendations regarding the use of third-trimester ultrasound lack universal consensus. Yet, there is evidence which supports its value in assessing fetal growth, fetal well-being, and a number of pregnancy-related complications. This literature review evaluates the available scientific evidence regarding its applications, usefulness, and the timing of the third-trimester scan in a low-risk population.

View Article and Find Full Text PDF

De novo inherited Xq25 deletion: hints from preimplantation genetic testing in alobar holoprosencephaly.

Eur J Obstet Gynecol Reprod Biol

August 2025

Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen 518000 Guangdong, China; Shenzhen Clinical Research Center for Obstetrics & Gynecology and Reproductive System Diseases, Shenzhen 518000 Guangdong, China. Electronic address: szfyart

Objective: This study investigates the association between alobar holoprosencephaly (HPE) and de novo germline microdeletions in the Xq25 region. To develop a Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) based workflow enabling high-resolution preimplantation detection of sub-Mb microdeletions, overcoming the >1 Mb resolution limit of conventional whole genome amplification(WGA) copy number variation(CNV) sequencing to identify causative Xq25 variants and prevent pathogenic microdeletion transmission.

Methods: This study presents a clinical case involving a couple with an adverse obstetric history accompanied by two occurrences of HPE.

View Article and Find Full Text PDF

Amniotic fluid embolism (AFE) is a critical obstetric complication characterized by the entry of amniotic fluid and its components into maternal circulation during parturition, leading to acute cardiopulmonary failure, disseminated intravascular coagulation (DIC), and anaphylactic shock. Affected patients typically exhibit abrupt onset, rapid progression, and exceedingly high mortality. Early recognition and prompt intervention are pivotal in AFE management.

View Article and Find Full Text PDF

Amniotic fluid stem cell therapy improves erectile function in a diabetic rat model.

Andrology

September 2025

Department of Urology, Knuppe Molecular Urology Laboratory, School of Medicine, University of California, San Francisco, California, USA.

Background: Current treatments for diabetic erectile dysfunction, such as phosphodiesterase type 5 inhibitors, penile injection, or vacuum erection devices, primarily offer symptomatic relief and do not address the underlying pathophysiology, which involves neural, vascular, and smooth muscle degeneration.

Objectives: This study aimed to evaluate the therapeutic potential of amniotic fluid-derived stem cells in a rat model of diabetic erectile dysfunction by assessing their impact on erectile function and penile tissue regeneration.

Methods: Male Sprague‒Dawley rats were divided into control, diabetic, and amniotic fluid-derived stem cell-treated diabetic groups.

View Article and Find Full Text PDF