Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to expand the potential applications of G-quadruplex structures, we explored the ability of heterochiral oligodeoxynucleotides based on the thrombin-binding aptamer (TBA) sequence to fold into similar complexes, with particular focus on their resistance in biological environments. A combination of CD and NMR techniques was used. Similarly to TBA, the ODN ggTTggtgtggTTgg (lower case letters indicate L residues) is able to fold into a chair-like antiparallel G-quadruplex structure, but has a slightly higher thermal stability. The discovery that heterochiral ODNs are able to form stable G-quadruplex structures opens up new possibilities for their development in several fields, as aptamers, sensors and, as recently shown, as catalysts for enantioselective reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201300775DOI Listing

Publication Analysis

Top Keywords

g-quadruplex structures
12
expanding potential
4
g-quadruplex
4
potential g-quadruplex
4
structures formation
4
formation heterochiral
4
heterochiral tba
4
tba analogue
4
analogue order
4
order expand
4

Similar Publications

Biological cells use cations as signaling messengers to regulate a variety of responses. Linking cations to the functionality of synthetic membranes is thus crucial to engineering advanced biomimetic agents such as synthetic cells. Here, we introduce bioinspired DNA-based receptors that exploit noncanonical G-quadruplexes for cation-actuated structural and functional responses in synthetic lipid membranes.

View Article and Find Full Text PDF

Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.

Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.

View Article and Find Full Text PDF

BRCA1 is a crucial component of homologous recombination (HR), a high-fidelity pathway for repairing double-stranded DNA breaks (DSBs) in human cells. The central region of the BRCA1 protein contains two putative DNA binding domains (DBDs), yet their relative substrate specificities and functional contributions to HR remain unclear. Here, we characterized the DNA binding properties of DBD1 (amino acids 330-554), DBD2 (amino acids 894-1057), and BRCA1 C-terminal (BRCT) repeats using biolayer interferometry.

View Article and Find Full Text PDF

TDP-43 binds to RNA G-quadruplex structure and regulates mRNA stability and translation.

Nucleic Acids Res

August 2025

Department of Chemistry and State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Hong Kong SAR, 000000, China.

TDP-43 is a hallmark protein associated with neurodegenerative diseases. Recent studies revealed TDP-43 as an RNA G-quadruplex (rG4)-binding protein, impacting mRNA transport and function. However, our knowledge of the TDP-43-RNA secondary structure interaction and information on its specific rG4 targets are limited.

View Article and Find Full Text PDF

The identification of reliable biomarkers is essential for improving breast cancer (BC) detection, prognosis, and treatment. This study explores a human telomeric G-quadruplex (G4) model, tel, functionalized on Controlled Pore Glass (CPG) support, as a novel biomarker discovery tool. The oligonucleotide tel mimics multimeric G4 structures in telomeric overhangs.

View Article and Find Full Text PDF