98%
921
2 minutes
20
We report a comprehensive study of the tuning with electric fields of the resonant magneto-exciton optical phonon coupling in gated graphene. For magnetic fields around B ∼ 25 T that correspond to the range of the fundamental magneto-phonon resonance, the electron-phonon coupling can be switched on and off by tuning the position of the Fermi level in order to Pauli block the two fundamental inter-Landau level excitations. The effects of such a profound change in the electronic excitation spectrum are traced through investigations of the optical phonon response in polarization resolved magneto-Raman scattering experiments. We report on the observation of a splitting of the phonon feature with satellite peaks developing at particular values of the Landau level filling factor on the low or on the high energy side of the phonon, depending on the relative energy of the discrete electronic excitation and of the optical phonon. Shifts of the phonon energy as large as ±60 cm(-1) are observed close to the resonance. The intraband electronic excitation, the cyclotron resonance, is shown to play a relevant role in the observed spectral evolution of the phonon response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl404588g | DOI Listing |
J Phys Chem Lett
September 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.
View Article and Find Full Text PDFJ Chem Phys
September 2025
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
H3S, LaH10, and hydrogen-based compounds have garnered significant interest due to their high-temperature superconducting properties. However, the requirement for extremely high pressures limits their practical applications. In this study, YH4 is adopted as a base material, with partial substitution of yttrium (Y) by scandium (Sc), lanthanum (La), and zirconium (Zr).
View Article and Find Full Text PDFDalton Trans
September 2025
Departamento de Fisica Aplicada-ICMUV, MALTA Consolider Team, Universitat de Valencia, Av. Dr. Moliner 50, 46100 Burjassot (Valencia), Spain.
The impact of external pressure on the characteristics of SrTeO has been thoroughly examined using density-functional theory calculations up to 100 GPa. It has been predicted that SrTeO undergoes three phase transitions in the pressure range covered by this study. A first transition occurs at 2.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan, 342030, India.
We report an anomalous temperature-induced transition in thermal conductivity in the germanene monolayer around a critical temperature = 350 K. Equilibrium molecular dynamics simulations reveal a transition from ∼ scaling below the to ∼ above, contrasting with conventional ∼ behavior. This anomalous scaling correlates with the long-scale characteristic timescale obtained from double exponential fitting of the heat current autocorrelation function.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
The thermodynamic equilibrium assumption often invoked in modeling ion migration in solid-state materials remains insufficient to capture the true migration behavior of Li ions, particularly in less-crystalline superionic conductors that exhibit anomalously high Li ion conductivity. Such materials challenge classical frameworks and necessitate a lattice dynamics-based perspective that explicitly accounts for nonequilibrium phonon interactions and transient structural responses. Here, we uncover a phonon-governed Li ion migration mechanism in garnet-structured superionic conductors by comparing Ta-doped LiLaZrTaO (LLZTO4) to its undoped analogue, LiLaZrAlO (LLZO).
View Article and Find Full Text PDF