Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Children with high-grade glioma, including diffuse intrinsic pontine glioma (DIPG), have a poor prognosis despite multimodal therapy. Identifying novel therapeutic targets is critical to improve their outcome. We evaluated prognostic roles of telomere maintenance mechanisms in children with HGG, including DIPG. A multi-institutional retrospective study was conducted involving 50 flash-frozen HGG (35 non-brainstem; 15 DIPG) tumors from 45 children (30 non-brainstem; 15 DIPG). Telomerase activity, expression of hTERT mRNA (encoding telomerase catalytic component) and TERC (telomerase RNA template) and alternative lengthening of telomeres (ALT) mechanism were assayed. Cox Proportional Hazard regression analyses assessed association of clinical and pathological variables, TERC and hTERT levels, telomerase activity, and ALT use with progression-free or overall survival (OS). High TERC and hTERT expression was detected in 13/28 non-brainstem HGG samples as compared to non-neoplastic controls. High TERC and hTERT expression was identified in 13/15 and 11/15 DIPG samples, respectively, compared to controls. Evidence of ALT was noted in 3/11 DIPG and 10/19 non-brainstem HGG specimens. ALT and telomerase use were identified in 4/19 non-brainstem HGG and 2/11 DIPG specimens. In multivariable analyses, increased TERC and hTERT levels were associated with worse OS in patients with non-brainstem HGG, after controlling for tumor grade or resection extent. Children with HGG and DIPG, have increased hTERT and TERC expression. In children with non-brainstem HGG, increased TERC and hTERT expression levels are associated with a worse OS, making telomerase a promising potential therapeutic target in pediatric HGG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261223PMC
http://dx.doi.org/10.1007/s11060-014-1374-9DOI Listing

Publication Analysis

Top Keywords

terc htert
20
non-brainstem hgg
20
htert expression
12
hgg
9
telomere maintenance
8
maintenance mechanisms
8
dipg
8
children hgg
8
non-brainstem dipg
8
children non-brainstem
8

Similar Publications

Colorectal cancer (CRC) poses a global health challenge, with current treatments often harming both cancerous and normal cells. To improve efficacy, a multifunctional drug delivery platform has been developed, integrating bioactive materials, anticancer agents, and targeted recognition ligands into a single molecule. This study aimed to create a molecular hybrid (MH) containing doxorubicin, AS1411 aptamer, and T9/U4 ASO to regulate SW480 cell proliferation.

View Article and Find Full Text PDF

Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-pseudoknot (t/PK) and the three-way junction (CR4/5). These hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are essential for telomerase activity. Here, we probe hTR structure in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis.

View Article and Find Full Text PDF

Obesity-Senescence-Breast Cancer: Clinical Presentation of a Common Unfortunate Cycle.

Adv Exp Med Biol

September 2024

Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.

Article Synopsis
  • There is limited research on how obesity, cell aging, and telomere shortening are interrelated, but it is established that telomere shortening contributes significantly to aging and age-related illnesses.* -
  • Telomerase activity, which helps maintain telomere length, is absent in normal breast tissue but is crucial for the survival and growth of breast cancer cells, particularly in obese patients with hormone-dependent cancers.* -
  • The review discusses how elevated leptin levels in obesity can enhance breast cancer cell growth by affecting telomerase activity and explores potential drug therapies targeting telomerase to treat ERα+ postmenopausal breast cancers.*
View Article and Find Full Text PDF

Background: Breast cancer shows significant clinical, morphologic, and molecular variation. Telomeres are nucleoprotein complexes composed of hexanucleotide repeat DNA sequence, TTAGGG, and numerous telomere-associated proteins. The maintenance of telomere length is carried out by a ribonucleoprotein called telomerase, which consists of two main components: a catalytic subunit called hTERT (human telomerase reverse transcriptase) and an RNA template called hTR (human telomerase RNA).

View Article and Find Full Text PDF

As aberrant accumulation of RNA-DNA hybrids (R-loops) causes DNA damage and genome instability, cells express regulators of R-loop structures. Here we report that RNA-dependent RNA polymerase (RdRP) activity of human telomerase reverse transcriptase (hTERT) regulates R-loop formation. We found that the phosphorylated form of hTERT (p-hTERT) exhibits RdRP activity in nuclear speckles both in telomerase-positive cells and telomerase-negative cells with alternative lengthening of telomeres (ALT) activity.

View Article and Find Full Text PDF